我正在尝试了解Baum-Welch算法(与隐马尔可夫模型一起使用)。我了解前进- 后退模型的基本理论,但是对于某些人来说,用一些代码来解释它会很好(我发现阅读代码更容易,因为我可以四处弄懂它)。我检查了github和bitbucket,没有发现任何容易理解的内容。
网上有很多HMM教程,但是已经提供了概率,或者对于拼写检查器,添加了出现的单词来构成模型。如果有人有仅用观测值创建Baum- Welch模型的示例,那就太好了。例如,在http://en.wikipedia.org/wiki/Hidden_Markov_model#A_concrete_example中,如果您只有:
states = ('Rainy', 'Sunny') observations = ('walk', 'shop', 'clean')
这只是一个例子,我认为任何可以解释它的例子都是可以的,我们可以与他人一起玩以更好地理解。我有一个要解决的特定问题,但我认为显示人们可以从中学习并应用到自己的问题中的代码可能更有价值(如果不能接受,我可以发布自己的问题)。如果可能的话,最好在python(或java)中使用它。
提前致谢!
这是我几年前根据Jurafsky / Martin(第2版,第6章,如果您可以访问本书)中的演示文稿为一堂课编写的一些代码。它确实不是很好的代码,它绝对不应该使用numpy,并且做一些废话以使数组以1索引,而不是仅仅将公式调整为0索引,但是,也许它将救命。在代码中,Baum- Welch被称为“向前-向后”。
示例/测试数据基于Jason Eisner的电子表格,该电子表格实现了一些与HMM相关的算法。请注意,模型的实现版本使用其他状态具有转移概率的吸收性END状态,而不是假定预先存在的固定序列长度。
(如果您愿意,也可以作为要点。)
hmm.py,其中一半是基于以下文件的测试代码:
hmm.py
#!/usr/bin/env python """ CS 65 Lab #3 -- 5 Oct 2008 Dougal Sutherland Implements a hidden Markov model, based on Jurafsky + Martin's presentation, which is in turn based off work by Jason Eisner. We test our program with data from Eisner's spreadsheets. """ identity = lambda x: x class HiddenMarkovModel(object): """A hidden Markov model.""" def __init__(self, states, transitions, emissions, vocab): """ states - a list/tuple of states, e.g. ('start', 'hot', 'cold', 'end') start state needs to be first, end state last states are numbered by their order here transitions - the probabilities to go from one state to another transitions[from_state][to_state] = prob emissions - the probabilities of an observation for a given state emissions[state][observation] = prob vocab: a list/tuple of the names of observable values, in order """ self.states = states self.real_states = states[1:-1] self.start_state = 0 self.end_state = len(states) - 1 self.transitions = transitions self.emissions = emissions self.vocab = vocab # functions to get stuff one-indexed state_num = lambda self, n: self.states[n] state_nums = lambda self: xrange(1, len(self.real_states) + 1) vocab_num = lambda self, n: self.vocab[n - 1] vocab_nums = lambda self: xrange(1, len(self.vocab) + 1) num_for_vocab = lambda self, s: self.vocab.index(s) + 1 def transition(self, from_state, to_state): return self.transitions[from_state][to_state] def emission(self, state, observed): return self.emissions[state][observed - 1] # helper stuff def _normalize_observations(self, observations): return [None] + [self.num_for_vocab(o) if o.__class__ == str else o for o in observations] def _init_trellis(self, observed, forward=True, init_func=identity): trellis = [ [None for j in range(len(observed))] for i in range(len(self.real_states) + 1) ] if forward: v = lambda s: self.transition(0, s) * self.emission(s, observed[1]) else: v = lambda s: self.transition(s, self.end_state) init_pos = 1 if forward else -1 for state in self.state_nums(): trellis[state][init_pos] = init_func( v(state) ) return trellis def _follow_backpointers(self, trellis, start): # don't bother branching pointer = start[0] seq = [pointer, self.end_state] for t in reversed(xrange(1, len(trellis[1]))): val, backs = trellis[pointer][t] pointer = backs[0] seq.insert(0, pointer) return seq # actual algorithms def forward_prob(self, observations, return_trellis=False): """ Returns the probability of seeing the given `observations` sequence, using the Forward algorithm. """ observed = self._normalize_observations(observations) trellis = self._init_trellis(observed) for t in range(2, len(observed)): for state in self.state_nums(): trellis[state][t] = sum( self.transition(old_state, state) * self.emission(state, observed[t]) * trellis[old_state][t-1] for old_state in self.state_nums() ) final = sum(trellis[state][-1] * self.transition(state, -1) for state in self.state_nums()) return (final, trellis) if return_trellis else final def backward_prob(self, observations, return_trellis=False): """ Returns the probability of seeing the given `observations` sequence, using the Backward algorithm. """ observed = self._normalize_observations(observations) trellis = self._init_trellis(observed, forward=False) for t in reversed(range(1, len(observed) - 1)): for state in self.state_nums(): trellis[state][t] = sum( self.transition(state, next_state) * self.emission(next_state, observed[t+1]) * trellis[next_state][t+1] for next_state in self.state_nums() ) final = sum(self.transition(0, state) * self.emission(state, observed[1]) * trellis[state][1] for state in self.state_nums()) return (final, trellis) if return_trellis else final def viterbi_sequence(self, observations, return_trellis=False): """ Returns the most likely sequence of hidden states, for a given sequence of observations. Uses the Viterbi algorithm. """ observed = self._normalize_observations(observations) trellis = self._init_trellis(observed, init_func=lambda val: (val, [0])) for t in range(2, len(observed)): for state in self.state_nums(): emission_prob = self.emission(state, observed[t]) last = [(old_state, trellis[old_state][t-1][0] * \ self.transition(old_state, state) * \ emission_prob) for old_state in self.state_nums()] highest = max(last, key=lambda p: p[1])[1] backs = [s for s, val in last if val == highest] trellis[state][t] = (highest, backs) last = [(old_state, trellis[old_state][-1][0] * \ self.transition(old_state, self.end_state)) for old_state in self.state_nums()] highest = max(last, key = lambda p: p[1])[1] backs = [s for s, val in last if val == highest] seq = self._follow_backpointers(trellis, backs) return (seq, trellis) if return_trellis else seq def train_on_obs(self, observations, return_probs=False): """ Trains the model once, using the forward-backward algorithm. This function returns a new HMM instance rather than modifying this one. """ observed = self._normalize_observations(observations) forward_prob, forwards = self.forward_prob( observations, True) backward_prob, backwards = self.backward_prob(observations, True) # gamma values prob_of_state_at_time = posat = [None] + [ [0] + [forwards[state][t] * backwards[state][t] / forward_prob for t in range(1, len(observations)+1)] for state in self.state_nums()] # xi values prob_of_transition = pot = [None] + [ [None] + [ [0] + [forwards[state1][t] * self.transition(state1, state2) * self.emission(state2, observed[t+1]) * backwards[state2][t+1] / forward_prob for t in range(1, len(observations))] for state2 in self.state_nums()] for state1 in self.state_nums()] # new transition probabilities trans = [[0 for j in range(len(self.states))] for i in range(len(self.states))] trans[self.end_state][self.end_state] = 1 for state in self.state_nums(): state_prob = sum(posat[state]) trans[0][state] = posat[state][1] trans[state][-1] = posat[state][-1] / state_prob for oth in self.state_nums(): trans[state][oth] = sum(pot[state][oth]) / state_prob # new emission probabilities emit = [[0 for j in range(len(self.vocab))] for i in range(len(self.states))] for state in self.state_nums(): for output in range(1, len(self.vocab) + 1): n = sum(posat[state][t] for t in range(1, len(observations)+1) if observed[t] == output) emit[state][output-1] = n / sum(posat[state]) trained = HiddenMarkovModel(self.states, trans, emit, self.vocab) return (trained, posat, pot) if return_probs else trained # ====================== # = reading from files = # ====================== def normalize(string): if '#' in string: string = string[:string.index('#')] return string.strip() def make_hmm_from_file(f): def nextline(): line = f.readline() if line == '': # EOF return None else: return normalize(line) or nextline() n = int(nextline()) states = [nextline() for i in range(n)] # <3 list comprehension abuse num_vocab = int(nextline()) vocab = [nextline() for i in range(num_vocab)] transitions = [[float(x) for x in nextline().split()] for i in range(n)] emissions = [[float(x) for x in nextline().split()] for i in range(n)] assert nextline() is None return HiddenMarkovModel(states, transitions, emissions, vocab) def read_observations_from_file(f): return filter(lambda x: x, [normalize(line) for line in f.readlines()]) # ========= # = tests = # ========= import unittest class TestHMM(unittest.TestCase): def setUp(self): # it's complicated to pass args to a testcase, so just use globals self.hmm = make_hmm_from_file(file(HMM_FILENAME)) self.obs = read_observations_from_file(file(OBS_FILENAME)) def test_forward(self): prob, trellis = self.hmm.forward_prob(self.obs, True) self.assertAlmostEqual(prob, 9.1276e-19, 21) self.assertAlmostEqual(trellis[1][1], 0.1, 4) self.assertAlmostEqual(trellis[1][3], 0.00135, 5) self.assertAlmostEqual(trellis[1][6], 8.71549e-5, 9) self.assertAlmostEqual(trellis[1][13], 5.70827e-9, 9) self.assertAlmostEqual(trellis[1][20], 1.3157e-10, 14) self.assertAlmostEqual(trellis[1][27], 3.1912e-14, 13) self.assertAlmostEqual(trellis[1][33], 2.0498e-18, 22) self.assertAlmostEqual(trellis[2][1], 0.1, 4) self.assertAlmostEqual(trellis[2][3], 0.03591, 5) self.assertAlmostEqual(trellis[2][6], 5.30337e-4, 8) self.assertAlmostEqual(trellis[2][13], 1.37864e-7, 11) self.assertAlmostEqual(trellis[2][20], 2.7819e-12, 15) self.assertAlmostEqual(trellis[2][27], 4.6599e-15, 18) self.assertAlmostEqual(trellis[2][33], 7.0777e-18, 22) def test_backward(self): prob, trellis = self.hmm.backward_prob(self.obs, True) self.assertAlmostEqual(prob, 9.1276e-19, 21) self.assertAlmostEqual(trellis[1][1], 1.1780e-18, 22) self.assertAlmostEqual(trellis[1][3], 7.2496e-18, 22) self.assertAlmostEqual(trellis[1][6], 3.3422e-16, 20) self.assertAlmostEqual(trellis[1][13], 3.5380e-11, 15) self.assertAlmostEqual(trellis[1][20], 6.77837e-9, 14) self.assertAlmostEqual(trellis[1][27], 1.44877e-5, 10) self.assertAlmostEqual(trellis[1][33], 0.1, 4) self.assertAlmostEqual(trellis[2][1], 7.9496e-18, 22) self.assertAlmostEqual(trellis[2][3], 2.5145e-17, 21) self.assertAlmostEqual(trellis[2][6], 1.6662e-15, 19) self.assertAlmostEqual(trellis[2][13], 5.1558e-12, 16) self.assertAlmostEqual(trellis[2][20], 7.52345e-9, 14) self.assertAlmostEqual(trellis[2][27], 9.66609e-5, 9) self.assertAlmostEqual(trellis[2][33], 0.1, 4) def test_viterbi(self): path, trellis = self.hmm.viterbi_sequence(self.obs, True) self.assertEqual(path, [0] + [2]*13 + [1]*14 + [2]*6 + [3]) self.assertAlmostEqual(trellis[1][1] [0], 0.1, 4) self.assertAlmostEqual(trellis[1][6] [0], 5.62e-05, 7) self.assertAlmostEqual(trellis[1][7] [0], 4.50e-06, 8) self.assertAlmostEqual(trellis[1][16][0], 1.99e-09, 11) self.assertAlmostEqual(trellis[1][17][0], 3.18e-10, 12) self.assertAlmostEqual(trellis[1][23][0], 4.00e-13, 15) self.assertAlmostEqual(trellis[1][25][0], 1.26e-13, 15) self.assertAlmostEqual(trellis[1][29][0], 7.20e-17, 19) self.assertAlmostEqual(trellis[1][30][0], 1.15e-17, 19) self.assertAlmostEqual(trellis[1][32][0], 7.90e-19, 21) self.assertAlmostEqual(trellis[1][33][0], 1.26e-19, 21) self.assertAlmostEqual(trellis[2][ 1][0], 0.1, 4) self.assertAlmostEqual(trellis[2][ 4][0], 0.00502, 5) self.assertAlmostEqual(trellis[2][ 6][0], 0.00045, 5) self.assertAlmostEqual(trellis[2][12][0], 1.62e-07, 9) self.assertAlmostEqual(trellis[2][18][0], 3.18e-12, 14) self.assertAlmostEqual(trellis[2][19][0], 1.78e-12, 14) self.assertAlmostEqual(trellis[2][23][0], 5.00e-14, 16) self.assertAlmostEqual(trellis[2][28][0], 7.87e-16, 18) self.assertAlmostEqual(trellis[2][29][0], 4.41e-16, 18) self.assertAlmostEqual(trellis[2][30][0], 7.06e-17, 19) self.assertAlmostEqual(trellis[2][33][0], 1.01e-18, 20) def test_learning_probs(self): trained, gamma, xi = self.hmm.train_on_obs(self.obs, True) self.assertAlmostEqual(gamma[1][1], 0.129, 3) self.assertAlmostEqual(gamma[1][3], 0.011, 3) self.assertAlmostEqual(gamma[1][7], 0.022, 3) self.assertAlmostEqual(gamma[1][14], 0.887, 3) self.assertAlmostEqual(gamma[1][18], 0.994, 3) self.assertAlmostEqual(gamma[1][23], 0.961, 3) self.assertAlmostEqual(gamma[1][27], 0.507, 3) self.assertAlmostEqual(gamma[1][33], 0.225, 3) self.assertAlmostEqual(gamma[2][1], 0.871, 3) self.assertAlmostEqual(gamma[2][3], 0.989, 3) self.assertAlmostEqual(gamma[2][7], 0.978, 3) self.assertAlmostEqual(gamma[2][14], 0.113, 3) self.assertAlmostEqual(gamma[2][18], 0.006, 3) self.assertAlmostEqual(gamma[2][23], 0.039, 3) self.assertAlmostEqual(gamma[2][27], 0.493, 3) self.assertAlmostEqual(gamma[2][33], 0.775, 3) self.assertAlmostEqual(xi[1][1][1], 0.021, 3) self.assertAlmostEqual(xi[1][1][12], 0.128, 3) self.assertAlmostEqual(xi[1][1][32], 0.13, 3) self.assertAlmostEqual(xi[2][1][1], 0.003, 3) self.assertAlmostEqual(xi[2][1][22], 0.017, 3) self.assertAlmostEqual(xi[2][1][32], 0.095, 3) self.assertAlmostEqual(xi[1][2][4], 0.02, 3) self.assertAlmostEqual(xi[1][2][16], 0.018, 3) self.assertAlmostEqual(xi[1][2][29], 0.010, 3) self.assertAlmostEqual(xi[2][2][2], 0.972, 3) self.assertAlmostEqual(xi[2][2][12], 0.762, 3) self.assertAlmostEqual(xi[2][2][28], 0.907, 3) def test_learning_results(self): trained = self.hmm.train_on_obs(self.obs) tr = trained.transition self.assertAlmostEqual(tr(0, 0), 0, 5) self.assertAlmostEqual(tr(0, 1), 0.1291, 4) self.assertAlmostEqual(tr(0, 2), 0.8709, 4) self.assertAlmostEqual(tr(0, 3), 0, 4) self.assertAlmostEqual(tr(1, 0), 0, 5) self.assertAlmostEqual(tr(1, 1), 0.8757, 4) self.assertAlmostEqual(tr(1, 2), 0.1090, 4) self.assertAlmostEqual(tr(1, 3), 0.0153, 4) self.assertAlmostEqual(tr(2, 0), 0, 5) self.assertAlmostEqual(tr(2, 1), 0.0925, 4) self.assertAlmostEqual(tr(2, 2), 0.8652, 4) self.assertAlmostEqual(tr(2, 3), 0.0423, 4) self.assertAlmostEqual(tr(3, 0), 0, 5) self.assertAlmostEqual(tr(3, 1), 0, 4) self.assertAlmostEqual(tr(3, 2), 0, 4) self.assertAlmostEqual(tr(3, 3), 1, 4) em = trained.emission self.assertAlmostEqual(em(0, 1), 0, 4) self.assertAlmostEqual(em(0, 2), 0, 4) self.assertAlmostEqual(em(0, 3), 0, 4) self.assertAlmostEqual(em(1, 1), 0.6765, 4) self.assertAlmostEqual(em(1, 2), 0.2188, 4) self.assertAlmostEqual(em(1, 3), 0.1047, 4) self.assertAlmostEqual(em(2, 1), 0.0584, 4) self.assertAlmostEqual(em(2, 2), 0.4251, 4) self.assertAlmostEqual(em(2, 3), 0.5165, 4) self.assertAlmostEqual(em(3, 1), 0, 4) self.assertAlmostEqual(em(3, 2), 0, 4) self.assertAlmostEqual(em(3, 3), 0, 4) # train 9 more times for i in range(9): trained = trained.train_on_obs(self.obs) tr = trained.transition self.assertAlmostEqual(tr(0, 0), 0, 4) self.assertAlmostEqual(tr(0, 1), 0, 4) self.assertAlmostEqual(tr(0, 2), 1, 4) self.assertAlmostEqual(tr(0, 3), 0, 4) self.assertAlmostEqual(tr(1, 0), 0, 4) self.assertAlmostEqual(tr(1, 1), 0.9337, 4) self.assertAlmostEqual(tr(1, 2), 0.0663, 4) self.assertAlmostEqual(tr(1, 3), 0, 4) self.assertAlmostEqual(tr(2, 0), 0, 4) self.assertAlmostEqual(tr(2, 1), 0.0718, 4) self.assertAlmostEqual(tr(2, 2), 0.8650, 4) self.assertAlmostEqual(tr(2, 3), 0.0632, 4) self.assertAlmostEqual(tr(3, 0), 0, 4) self.assertAlmostEqual(tr(3, 1), 0, 4) self.assertAlmostEqual(tr(3, 2), 0, 4) self.assertAlmostEqual(tr(3, 3), 1, 4) em = trained.emission self.assertAlmostEqual(em(0, 1), 0, 4) self.assertAlmostEqual(em(0, 2), 0, 4) self.assertAlmostEqual(em(0, 3), 0, 4) self.assertAlmostEqual(em(1, 1), 0.6407, 4) self.assertAlmostEqual(em(1, 2), 0.1481, 4) self.assertAlmostEqual(em(1, 3), 0.2112, 4) self.assertAlmostEqual(em(2, 1), 0.00016,5) self.assertAlmostEqual(em(2, 2), 0.5341, 4) self.assertAlmostEqual(em(2, 3), 0.4657, 4) self.assertAlmostEqual(em(3, 1), 0, 4) self.assertAlmostEqual(em(3, 2), 0, 4) self.assertAlmostEqual(em(3, 3), 0, 4) if __name__ == '__main__': import sys HMM_FILENAME = sys.argv[1] if len(sys.argv) >= 2 else 'example.hmm' OBS_FILENAME = sys.argv[2] if len(sys.argv) >= 3 else 'observations.txt' unittest.main()
observations.txt,一系列测试观察:
observations.txt
2 3 3 2 3 2 3 2 2 3 1 3 3 1 1 1 2 1 1 1 3 1 2 1 1 1 2 3 3 2 3 2 2
example.hmm,用于生成数据的模型
example.hmm
4 # number of states START COLD HOT END 3 # size of vocab 1 2 3 # transition matrix 0.0 0.5 0.5 0.0 # from start 0.0 0.8 0.1 0.1 # from cold 0.0 0.1 0.8 0.1 # from hot 0.0 0.0 0.0 1.0 # from end # emission matrix 0.0 0.0 0.0 # from start 0.7 0.2 0.1 # from cold 0.1 0.2 0.7 # from hot 0.0 0.0 0.0 # from end