小编典典

仅使用加法,除法和乘法以固定数量的步长达到数字的算法

algorithm

在工作中以及在游戏中的某一时刻进行游戏时,玩家会被投入奖励游戏中。他们需要赢取的金额是预先确定的,但是我们想提出一种算法,该算法使用加法,乘法和除法以x步的数量达到该金额。步骤的数量也将提前知道,因此算法只需要弄清楚如何使用该数量的步骤即可达到数量。

您只能使用+1到+ 15,x2,x4,/ 2,/
4。您可以在步骤中超出目标数目,但必须在最后一步中达到目标数目。步长通常在15到30之间,并且您始终从0开始。

例如:Amount:100,Steps:10 == + 10,+ 2,x2,+ 4,x4,+ 10,/ 2,+ 15,+ 15,+ 9

数量:40,步数:12 == +15,+1,+5,+2,+1,/ 2, 4,+6,+6,/ 4,+5, 2

我很好奇是否已经存在这样的东西?我确定我们可以提出一些建议,但是如果有通用的算法可以完成这项工作,我就不想重新发明轮子。


更新:对@FryGuy的代码进行了一些小的更改,使其到达随机到达目标编号所需的路线。他的解决方案按原样运作良好,但是在看到它可行并考虑@Argote和@Moron的评论之后,我意识到它需要具有一定的随机性,以使其吸引我们的玩家。在10个步骤中增加+1以达到10个目标效果很好,但是就我们的使用方式而言,这很“无聊”。非常感谢所有发表评论和回答的人。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CR
{
    class Program
    {
        static void Main(string[] args)
        {
            while (true)
            {
                int targetNumber = 20;
                int steps = 13;
                int[] route = null;
                Boolean routeAcceptable = false;

                // Continue choosing routes until we find one that is acceptable (doesn't average above or target win, but does exceed it at least once)
                while(!routeAcceptable)
                {
                    routeAcceptable = CalculateRoute(targetNumber, steps, out route) && route.Average() < targetNumber && route.Max() > targetNumber;
                }

                foreach (int i in route.Reverse())
                {
                    Console.WriteLine(i);
                }
                Console.WriteLine("-----------------------");
                Console.ReadLine();
            }
        }

        static Boolean CalculateRoute(int targetNumber, int numSteps, out int[] route)
        {
            int maxValue = targetNumber * 16;
            bool[,] reachable = new bool[numSteps + 1, maxValue];

            // build up the map
            reachable[0, 0] = true;
            for (int step = 0; step < numSteps; step++)
            {
                for (int n = 0; n < maxValue; n++)
                {
                    if (reachable[step, n])
                    {
                        foreach (int nextNum in ReachableNumbersFrom(n))
                        {
                            if (nextNum < maxValue && nextNum > 0)
                            {
                                reachable[step + 1, nextNum] = true;
                            }
                        }
                    }
                }
            }

            // figure out how we got there
            int[] routeTaken = new int[numSteps + 1];
            int current = targetNumber;
            for (int step = numSteps; step >= 0; step--)
            {
                routeTaken[step] = current;
                bool good = false;

                // Randomize the reachable numbers enumeration to make the route 'interesting'
                foreach (int prev in RandomizedIEnumerbale(ReachableNumbersFromReverse(current)))
                {
                    if (prev < targetNumber * 8)
                    {
                        if (reachable[step, prev])
                        {
                            current = prev;
                            good = true;

                            // Avoid hitting the same number twice, again to make the route 'interesting'
                            for (int c = numSteps; c >= 0; c--)
                            {
                                reachable[c, prev] = false;
                            }
                            break;
                        }
                    }
                }

                if (!good)
                {
                    route = routeTaken;
                    return false;
                }
            }

            route = routeTaken;
            return true;
        }

        static IEnumerable<int> ReachableNumbersFrom(int n)
        {
            // additions
            for (int i = 1; i <= 15; i++)
            {
                yield return n + i;
            }

            // mults/divides
            yield return n / 2;
            yield return n / 4;
            yield return n * 2;
            yield return n * 4;
        }

        static IEnumerable<int> ReachableNumbersFromReverse(int n)
        {
            // additions
            for (int i = 1; i <= 15; i++)
            {
                if (n - i >= 0)
                    yield return n - i;
            }

            // mults/divides
            if (n % 2 == 0)
                yield return n / 2;
            if (n % 4 == 0)
                yield return n / 4;
            yield return n * 2;
            yield return n * 4;
        }

        static IEnumerable<int> RandomizedIEnumerbale(IEnumerable<int> enumerbale)
        {
            Random random = new Random(System.DateTime.Now.Millisecond);
            return (
                from r in
                    (
                        from num in enumerbale
                        select new { Num = num, Order = random.Next() }
                    )
                orderby r.Order
                select r.Num
                );
        }
    }
}

阅读 317

收藏
2020-07-28

共1个答案

小编典典

我会使用动态编程。首先,建立一个地图,列出每个步骤可以到达的数字,然后回溯以找出如何到达那里:

void CalculateRoute(int targetNumber, int numSteps)
{
    int maxValue = targetNumber * 16;
    bool[,] reachable = new bool[numSteps + 1, maxValue];

    // build up the map
    reachable[0, 0] = true;
    for (int step = 0; step < numSteps; step++)
    {
        for (int n = 0; n < maxValue; n++)
        {
            if (reachable[step, n])
            {
                foreach (int nextNum in ReachableNumbersFrom(n))
                {
                    if (nextNum < maxValue && nextNum >= 0)
                        reachable[step + 1, nextNum] = true;
                }
            }
        }
    }

    // figure out how we got there
    int current = targetNumber;
    for (int step = numSteps; step >= 0; step--)
    {
        Console.WriteLine(current);

        bool good = false;
        foreach (int prev in ReachableNumbersFromReverse(current))
        {
            if (reachable[step, prev])
            {
                current = prev;
                good = true;
                break;
            }
        }

        if (!good)
        {
            Console.WriteLine("Unable to proceed");
            break;
        }
    }
}

IEnumerable<int> ReachableNumbersFrom(int n)
{
    // additions
    for (int i = 1; i <= 15; i++)
        yield return n + i;

    // mults/divides
    yield return n / 2;
    yield return n / 4;
    yield return n * 2;
    yield return n * 4;
}

IEnumerable<int> ReachableNumbersFromReverse(int n)
{
    // additions
    for (int i = 1; i <= 15; i++)
        yield return n - i;

    // mults/divides
    if (n % 2 == 0)
        yield return n / 2;
    if (n % 4 == 0)
        yield return n / 4;
    yield return n * 2;
    yield return n * 4;
}
2020-07-28