我正在尝试使用Pandas DataFrame对象在pyplot中制作一个简单的散点图,但是想要一种有效的方式来绘制两个变量,但要用第三列(键)来指定符号。我已经尝试过使用df.groupby的各种方法,但是没有成功。下面是一个示例df脚本。这会根据“ key1”为标记着色,但是我想看到带有“ key1”类别的图例。我靠近吗?谢谢。
import numpy as np import pandas as pd import matplotlib.pyplot as plt df = pd.DataFrame(np.random.normal(10,1,30).reshape(10,3), index = pd.date_range('2010-01-01', freq = 'M', periods = 10), columns = ('one', 'two', 'three')) df['key1'] = (4,4,4,6,6,6,8,8,8,8) fig1 = plt.figure(1) ax1 = fig1.add_subplot(111) ax1.scatter(df['one'], df['two'], marker = 'o', c = df['key1'], alpha = 0.8) plt.show()
你可以使用scatter它,但是这需要为你提供数值key1,并且你不会注意到图例。
scatter
key1
最好只plot对像这样的离散类别使用。例如:
plot
import matplotlib.pyplot as plt import numpy as np import pandas as pd np.random.seed(1974) # Generate Data num = 20 x, y = np.random.random((2, num)) labels = np.random.choice(['a', 'b', 'c'], num) df = pd.DataFrame(dict(x=x, y=y, label=labels)) groups = df.groupby('label') # Plot fig, ax = plt.subplots() ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling for name, group in groups: ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name) ax.legend() plt.show()
如果你希望外观看起来像默认pandas样式,则只需rcParams使用pandas样式表进行更新,并使用其颜色生成器即可。(我也略微调整了图例):
import matplotlib.pyplot as plt import numpy as np import pandas as pd np.random.seed(1974) # Generate Data num = 20 x, y = np.random.random((2, num)) labels = np.random.choice(['a', 'b', 'c'], num) df = pd.DataFrame(dict(x=x, y=y, label=labels)) groups = df.groupby('label') # Plot plt.rcParams.update(pd.tools.plotting.mpl_stylesheet) colors = pd.tools.plotting._get_standard_colors(len(groups), color_type='random') fig, ax = plt.subplots() ax.set_color_cycle(colors) ax.margins(0.05) for name, group in groups: ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name) ax.legend(numpoints=1, loc='upper left') plt.show()