Java 类org.apache.commons.math3.linear.CholeskyDecomposition 实例源码

项目:MeteoInfoLib    文件:LinalgUtil.java   
/**
 * Calculates the Cholesky decomposition of a matrix. The Cholesky
 * decomposition of a real symmetric positive-definite matrix A consists of
 * a lower triangular matrix L with same size such that: A = LLT. In a
 * sense, this is the square root of A.
 *
 * @param a The given matrix.
 * @return Result array.
 */
public static Array cholesky(Array a) {
    Array r = Array.factory(DataType.DOUBLE, a.getShape());
    double[][] aa = (double[][]) ArrayUtil.copyToNDJavaArray(a);
    RealMatrix matrix = new Array2DRowRealMatrix(aa, false);
    CholeskyDecomposition decomposition = new CholeskyDecomposition(matrix);
    RealMatrix L = decomposition.getL();
    int n = L.getColumnDimension();
    int m = L.getRowDimension();
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            r.setDouble(i * n + j, L.getEntry(i, j));
        }
    }

    return r;
}
项目:elasticsearch-linear-regression    文件:CommonsMathSolver.java   
@Override
public SlopeCoefficients estimateCoefficients(final DerivationEquation eq)
    throws EstimationException {
  final double[][] sourceTriangleMatrix = eq.getCovarianceLowerTriangularMatrix();
  // Copy matrix and enhance it to a full matrix as expected by CholeskyDecomposition
  // FIXME: Avoid copy job to speed-up the solving process e.g. by extending the CholeskyDecomposition constructor
  final int length = sourceTriangleMatrix.length;
  final double[][] matrix = new double[length][];
  for (int i = 0; i < length; i++) {
    matrix[i] = new double[length];
    final double[] s = sourceTriangleMatrix[i];
    final double[] t = matrix[i];
    for (int j = 0; j <= i; j++) {
      t[j] = s[j];
    }
    for (int j = i + 1; j < length; j++) {
      t[j] = sourceTriangleMatrix[j][i];
    }
  }
  final RealMatrix coefficients =
      new Array2DRowRealMatrix(matrix, false);
  try {
    final DecompositionSolver solver = new CholeskyDecomposition(coefficients).getSolver();
    final RealVector constants = new ArrayRealVector(eq.getConstraints(), true);
    final RealVector solution = solver.solve(constants);
    return new DefaultSlopeCoefficients(solution.toArray());
  } catch (final NonPositiveDefiniteMatrixException e) {
    throw new EstimationException("Matrix inversion error due to data is linearly dependent", e);
  }
}
项目:imagingbook-common    文件:MahalanobisDistance.java   
/**
 * Returns the 'root' (U) of the inverse covariance matrix S^{-1},
 * such that S^{-1} = U^T . U
 * This matrix can be used to pre-transform the original sample
 * vectors X (by X &#8594; U . X) to a space where distance measurement (in the Mahalanobis
 * sense) can be calculated with the usual Euclidean norm.
 * The matrix U is invertible in case the reverse mapping is required.
 * 
 * @return The matrix for pre-transforming the original sample vectors.
 */
public double[][] getWhiteningTransformation() {
    IJ.log("in whitening");
    double relativeSymmetryThreshold = 1.0E-6;      // CholeskyDecomposition.DEFAULT_RELATIVE_SYMMETRY_THRESHOLD == 1.0E-15; too small!
       double absolutePositivityThreshold = 1.0E-10;    // CholeskyDecomposition.DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD == 1.0E-10;
    CholeskyDecomposition cd = 
            new CholeskyDecomposition(MatrixUtils.createRealMatrix(iCov),
                    relativeSymmetryThreshold, absolutePositivityThreshold);
    RealMatrix U = cd.getLT();
    return U.getData();
}
项目:SME    文件:GaussNewtonOptimizer.java   
@Override
protected RealVector solve(final RealMatrix jacobian,
                           final RealVector residuals) {
    try {
        final Pair<RealMatrix, RealVector> normalEquation =
                computeNormalMatrix(jacobian, residuals);
        final RealMatrix normal = normalEquation.getFirst();
        final RealVector jTr = normalEquation.getSecond();
        return new CholeskyDecomposition(
                normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
                .getSolver()
                .solve(jTr);
    } catch (NonPositiveDefiniteMatrixException e) {
        throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
    }
}
项目:droidplanner-master    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z the measurement vector
 * @throws DimensionMismatchException if the dimension of the
 * measurement vector does not fit
 * @throws org.apache.commons.math3.linear.SingularMatrixException
 * if the covariance matrix could not be inverted
 */
public void correct(final RealVector z) {
    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:nongfei-missionplane    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z the measurement vector
 * @throws DimensionMismatchException if the dimension of the
 * measurement vector does not fit
 * @throws org.apache.commons.math3.linear.SingularMatrixException
 * if the covariance matrix could not be inverted
 */
public void correct(final RealVector z) {
    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:CARMA    文件:GaussNewtonOptimizer.java   
@Override
protected RealVector solve(final RealMatrix jacobian,
                           final RealVector residuals) {
    try {
        final Pair<RealMatrix, RealVector> normalEquation =
                computeNormalMatrix(jacobian, residuals);
        final RealMatrix normal = normalEquation.getFirst();
        final RealVector jTr = normalEquation.getSecond();
        return new CholeskyDecomposition(
                normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
                .getSolver()
                .solve(jTr);
    } catch (NonPositiveDefiniteMatrixException e) {
        throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
    }
}
项目:universal-java-matrix-package    文件:AbstractCommonsMathDenseDoubleMatrix2D.java   
public Matrix invSPD() {
    try {
        return CommonsMathDenseDoubleMatrix2DFactory.INSTANCE.dense(new CholeskyDecomposition(matrix).getSolver()
                .getInverse());
    } catch (Exception e) {
        throw new RuntimeException(e);
    }
}
项目:universal-java-matrix-package    文件:AbstractCommonsMathDenseDoubleMatrix2D.java   
public Matrix solveSPD(Matrix b) {
    try {
        if (b instanceof AbstractCommonsMathDenseDoubleMatrix2D) {
            AbstractCommonsMathDenseDoubleMatrix2D b2 = (AbstractCommonsMathDenseDoubleMatrix2D) b;
            RealMatrix ret = new CholeskyDecomposition(matrix).getSolver().solve(b2.matrix);
            return CommonsMathDenseDoubleMatrix2DFactory.INSTANCE.dense(ret);
        } else {
            return super.solve(b);
        }
    } catch (Exception e) {
        throw new RuntimeException(e);
    }
}
项目:BLELocalization    文件:SyntheticBeaconDataGenerator.java   
public void fit(List<Location> locations){
    setLocations(locations);
    int n = locations.size();
    double[][] K = new double[n][n];

    for(int i=0; i<n; i++){
        Location loc1 = locations.get(i);
        double[] x1 = ModelAdaptUtils.locationToVec(loc1);
        for(int j=i; j<n; j++){
            Location loc2 = locations.get(j);
            double[] x2 = ModelAdaptUtils.locationToVec(loc2);
            double k =kernel.computeKernel(x1, x2);
            K[i][j] = k;
            K[j][i] = k;
        }
    }
    RealMatrix Kmat = MatrixUtils.createRealMatrix(K);
    RealMatrix lambdamat = MatrixUtils.createRealIdentityMatrix(n).scalarMultiply(sigma_n*sigma_n); //Tentative treatment

    RealMatrix Kymat = Kmat.add(lambdamat);

    CholeskyDecomposition chol = new CholeskyDecomposition(Kymat);
    RealMatrix Lmat = chol.getL();

    double[] normalRands = new double[n];
    for(int i=0; i<n; i++){
        normalRands[i] = rand.nextGaussian();
    }
    this.y = Lmat.operate(normalRands);

    RealMatrix invKymat = (new LUDecomposition(Kymat)).getSolver().getInverse();
    this.alphas = invKymat.operate(y);
}
项目:systemml    文件:LibCommonsMath.java   
/**
 * Function to compute Cholesky decomposition of the given input matrix. 
 * The input must be a real symmetric positive-definite matrix.
 * 
 * @param in commons-math3 Array2DRowRealMatrix
 * @return matrix block
 * @throws DMLRuntimeException if DMLRuntimeException occurs
 */
private static MatrixBlock computeCholesky(Array2DRowRealMatrix in) 
    throws DMLRuntimeException 
{   
    if ( !in.isSquare() )
        throw new DMLRuntimeException("Input to cholesky() must be square matrix -- given: a " + in.getRowDimension() + "x" + in.getColumnDimension() + " matrix.");

    CholeskyDecomposition cholesky = new CholeskyDecomposition(in, 1e-14,
        CholeskyDecomposition.DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD);
    RealMatrix rmL = cholesky.getL();

    return DataConverter.convertToMatrixBlock(rmL.getData());
}
项目:Gprs_droidplanner    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z the measurement vector
 * @throws DimensionMismatchException if the dimension of the
 * measurement vector does not fit
 * @throws org.apache.commons.math3.linear.SingularMatrixException
 * if the covariance matrix could not be inverted
 */
public void correct(final RealVector z) {
    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:astor    文件:GaussNewtonOptimizer.java   
@Override
protected RealVector solve(final RealMatrix jacobian,
                           final RealVector residuals) {
    try {
        final Pair<RealMatrix, RealVector> normalEquation =
                computeNormalMatrix(jacobian, residuals);
        final RealMatrix normal = normalEquation.getFirst();
        final RealVector jTr = normalEquation.getSecond();
        return new CholeskyDecomposition(
                normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
                .getSolver()
                .solve(jTr);
    } catch (NonPositiveDefiniteMatrixException e) {
        throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
    }
}
项目:astor    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:astor    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:astor    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:astor    文件:GaussNewtonOptimizer.java   
@Override
protected RealVector solve(final RealMatrix jacobian,
                           final RealVector residuals) {
    try {
        final Pair<RealMatrix, RealVector> normalEquation =
                computeNormalMatrix(jacobian, residuals);
        final RealMatrix normal = normalEquation.getFirst();
        final RealVector jTr = normalEquation.getSecond();
        return new CholeskyDecomposition(
                normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
                .getSolver()
                .solve(jTr);
    } catch (NonPositiveDefiniteMatrixException e) {
        throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
    }
}
项目:3DRServices    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z the measurement vector
 * @throws DimensionMismatchException if the dimension of the
 * measurement vector does not fit
 * @throws org.apache.commons.math3.linear.SingularMatrixException
 * if the covariance matrix could not be inverted
 */
public void correct(final RealVector z) {
    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:Strata    文件:CholeskyDecompositionCommonsResult.java   
/**
 * Constructor.
 * @param ch The result of the Cholesky decomposition.
 */
public CholeskyDecompositionCommonsResult(CholeskyDecomposition ch) {
  ArgChecker.notNull(ch, "Cholesky decomposition");
  _determinant = ch.getDeterminant();
  _l = CommonsMathWrapper.unwrap(ch.getL());
  _lt = CommonsMathWrapper.unwrap(ch.getLT());
  _solver = ch.getSolver();
}
项目:optimize    文件:Stats.java   
public static SampleLikelihood ellipticalSliceSampler(IntDoubleVector initial_pt, double initial_lnpdf, CholeskyDecomposition decomp, Function lnpdf) { 

    int D = lnpdf.getNumDimensions();
    double [] x = new double[D];
    for(int i=0; i<D; i++) x[i] = initial_pt.get(i);
    RealMatrix init_val = MatrixUtils.createColumnRealMatrix(x);
    RealMatrix L = decomp.getL();
    RealMatrix r = MatrixUtils.createColumnRealMatrix(getNormalVector(D));
    RealMatrix nu = L.multiply(r);
    double hh = Math.log(Prng.nextDouble()) + initial_lnpdf;

    // Set up the ellipse and the slice threshold
    double phi = Prng.nextDouble()*2.0*Math.PI;
    double phi_min = phi-2.0*Math.PI;
    double phi_max = phi;

    // Slice sampling loop
    while(true) {
        // Compute xx for proposed angle difference and check if it's on the slice
        RealMatrix xx_prop = init_val.scalarMultiply(phi).add(nu.scalarMultiply(Math.sin(phi)));
        double cur_lnpdf = lnpdf.getValue(new IntDoubleDenseVector(xx_prop.getColumn(0)));
        if(cur_lnpdf > hh) {
            return new SampleLikelihood(xx_prop.getColumnVector(0).toArray(), cur_lnpdf);
        }
        // Shrink slice to rejected point
        if(phi > 0) {
            phi_max = phi;
        } else if(phi < 0) {
            phi_min = phi;
        } else {
            throw new RuntimeException("Shrunk to current position and still not acceptable");
        }
        // Propose new angle difference
        phi = Prng.nextDouble()*(phi_max - phi_min) + phi_min;
    }
}
项目:MASPlanes    文件:InverseWishartDistribution.java   
private void initialize() {
    final int dim = scaleMatrix.getColumnDimension();

    // Build gamma distributions for the diagonal
    gammas = new GammaDistribution[dim];
    for (int i = 0; i < dim; i++) {

        gammas[i] = new GammaDistribution(df-i-.99/2, 2);
    }

    // Build the cholesky decomposition
    cholesky = new CholeskyDecomposition(scaleMatrix);
}
项目:idylfin    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:autoredistrict    文件:GaussNewtonOptimizer.java   
@Override
protected RealVector solve(final RealMatrix jacobian,
                           final RealVector residuals) {
    try {
        final Pair<RealMatrix, RealVector> normalEquation =
                computeNormalMatrix(jacobian, residuals);
        final RealMatrix normal = normalEquation.getFirst();
        final RealVector jTr = normalEquation.getSecond();
        return new CholeskyDecomposition(
                normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
                .getSolver()
                .solve(jTr);
    } catch (NonPositiveDefiniteMatrixException e) {
        throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
    }
}
项目:FSensor    文件:RotationKalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z) throws NullArgumentException,
           DimensionMismatchException, SingularMatrixException
{

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension())
    {
        throw new DimensionMismatchException(z.getDimension(),
                measurementMatrix.getRowDimension());
    }

    // S = H * P(k) * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
            .multiply(measurementMatrixT)
            .add(measurementModel.getMeasurementNoise());

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix
            .operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1

    // instead of calculating the inverse of S we can rearrange the formula,
    // and then solve the linear equation A x X = B with A = S', X = K' and
    // B = (H * P)'

    // K(k) * S = P(k)- * H'
    // S' * K(k)' = H * P(k)-'
    RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
            .solve(measurementMatrix.multiply(errorCovariance.transpose()))
            .transpose();

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain
            .getRowDimension());
    errorCovariance = identity.subtract(
            kalmanGain.multiply(measurementMatrix)).multiply(
            errorCovariance);
}
项目:morpheus-core    文件:XDataFrameAlgebraApache.java   
/**
 * Constructor
 * @param matrix    the input matrix
 */
XCD(RealMatrix matrix) {
    this.cd = new CholeskyDecomposition(matrix);
    this.l = LazyValue.of(() -> toDataFrame(cd.getL()));
}
项目:SME    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1

    // instead of calculating the inverse of S we can rearrange the formula,
    // and then solve the linear equation A x X = B with A = S', X = K' and B = (H * P)'

    // K(k) * S = P(k)- * H'
    // S' * K(k)' = H * P(k)-'
    RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
            .solve(measurementMatrix.multiply(errorCovariance.transpose()))
            .transpose();

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:eamaster    文件:AdaptiveMetropolis.java   
@Override
public Solution[] evolve(Solution[] parents) {
    int k = parents.length;
    int n = parents[0].getNumberOfVariables();
    RealMatrix x = new Array2DRowRealMatrix(k, n);

    for (int i=0; i<k; i++) {
        x.setRow(i, EncodingUtils.getReal(parents[i]));
    }

    try {
        //perform Cholesky factorization and get the upper triangular matrix
        double jumpRate = Math.pow(jumpRateCoefficient / Math.sqrt(n), 2.0);

        RealMatrix chol = new CholeskyDecomposition(
                    new Covariance(x.scalarMultiply(jumpRate))
                    .getCovarianceMatrix()).getLT();

        //produce the offspring
        Solution[] offspring = new Solution[numberOfOffspring];

        for (int i=0; i<numberOfOffspring; i++) {
            Solution child = parents[PRNG.nextInt(parents.length)].copy();

            //apply adaptive metropolis step to solution
            RealVector muC = new ArrayRealVector(
                    EncodingUtils.getReal(child));
            RealVector ru = new ArrayRealVector(n);

            for (int j=0; j<n; j++) {
                ru.setEntry(j, PRNG.nextGaussian());
            }

            double[] variables = muC.add(chol.preMultiply(ru)).toArray();

            //assign variables back to solution
            for (int j=0; j<n; j++) {
                RealVariable variable = (RealVariable)child.getVariable(j);
                double value = variables[j];

                if (value < variable.getLowerBound()) {
                    value = variable.getLowerBound();
                } else if (value > variable.getUpperBound()) {
                    value = variable.getUpperBound();
                }

                variable.setValue(value);
            }

            offspring[i] = child;
        }

        return offspring;
    } catch (Exception e) {
        return new Solution[0];
    }
}
项目:CARMA    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1

    // instead of calculating the inverse of S we can rearrange the formula,
    // and then solve the linear equation A x X = B with A = S', X = K' and B = (H * P)'

    // K(k) * S = P(k)- * H'
    // S' * K(k)' = H * P(k)-'
    RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
            .solve(measurementMatrix.multiply(errorCovariance.transpose()))
            .transpose();

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:astor    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1

    // instead of calculating the inverse of S we can rearrange the formula,
    // and then solve the linear equation A x X = B with A = S', X = K' and B = (H * P)'

    // K(k) * S = P(k)- * H'
    // S' * K(k)' = H * P(k)-'
    RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
            .solve(measurementMatrix.multiply(errorCovariance.transpose()))
            .transpose();

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:astor    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1

    // instead of calculating the inverse of S we can rearrange the formula,
    // and then solve the linear equation A x X = B with A = S', X = K' and B = (H * P)'

    // K(k) * S = P(k)- * H'
    // S' * K(k)' = H * P(k)-'
    RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
            .solve(measurementMatrix.multiply(errorCovariance.transpose()))
            .transpose();

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:optimize    文件:Stats.java   
public static SampleLikelihood ellipticalSliceSampler(IntDoubleVector initial_pt, CholeskyDecomposition decomp, Function lnpdf) {
    double initial_lnpdf = lnpdf.getValue(initial_pt);
    // FIXME: what's the point of the line above?
    return ellipticalSliceSampler(initial_pt, decomp, lnpdf);
}
项目:autoredistrict    文件:KalmanFilter.java   
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1

    // instead of calculating the inverse of S we can rearrange the formula,
    // and then solve the linear equation A x X = B with A = S', X = K' and B = (H * P)'

    // K(k) * S = P(k)- * H'
    // S' * K(k)' = H * P(k)-'
    RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
            .solve(measurementMatrix.multiply(errorCovariance.transpose()))
            .transpose();

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
项目:january    文件:LinearAlgebra.java   
/**
 * Calculate Cholesky decomposition A = L L^T
 * @param a
 * @return L
 */
public static Dataset calcCholeskyDecomposition(Dataset a) {
    CholeskyDecomposition cd = new CholeskyDecomposition(createRealMatrix(a));
    return createDataset(cd.getL());
}
项目:deeplearning4j    文件:MathUtils.java   
/**
 * This will return the cholesky decomposition of
 * the given matrix
 * @param m the matrix to convert
 * @return the cholesky decomposition of the given
 * matrix.
 * See:
 * http://en.wikipedia.org/wiki/Cholesky_decomposition
 * @throws NonSquareMatrixException
 */
public CholeskyDecomposition choleskyFromMatrix(RealMatrix m) throws Exception {
    return new CholeskyDecomposition(m);
}
项目:deeplearning4j    文件:MathUtils.java   
/**
 * This will return the cholesky decomposition of
 * the given matrix
 * @param m the matrix to convert
 * @return the cholesky decomposition of the given
 * matrix.
 * See:
 * http://en.wikipedia.org/wiki/Cholesky_decomposition
 * @throws NonSquareMatrixException
 */
public CholeskyDecomposition choleskyFromMatrix(RealMatrix m) throws Exception {
    return new CholeskyDecomposition(m);
}