Java 类org.apache.commons.math3.linear.FieldLUDecomposition 实例源码

项目:SME    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param n number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int n) {

    final int rows = n - 1;

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(rows);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[rows];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver.solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[rows];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[rows];
    for (int i = 0; i < rows; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:SME    文件:AdamsNordsieckFieldTransformer.java   
/** Simple constructor.
 * @param field field to which the time and state vector elements belong
 * @param n number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckFieldTransformer(final Field<T> field, final int n) {

    this.field = field;
    final int rows = n - 1;

    // compute coefficients
    FieldMatrix<T> bigP = buildP(rows);
    FieldDecompositionSolver<T> pSolver =
        new FieldLUDecomposition<T>(bigP).getSolver();

    T[] u = MathArrays.buildArray(field, rows);
    Arrays.fill(u, field.getOne());
    c1 = pSolver.solve(new ArrayFieldVector<T>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    T[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = MathArrays.buildArray(field, rows);
    Arrays.fill(shiftedP[0], field.getZero());
    update = new Array2DRowFieldMatrix<T>(pSolver.solve(new Array2DRowFieldMatrix<T>(shiftedP, false)).getData());

}
项目:CARMA    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param nSteps number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int nSteps) {

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(nSteps);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[nSteps];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver
        .solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[nSteps];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[nSteps];
    for (int i = 0; i < nSteps; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:java-algebra-system    文件:GaussElimination.java   
/**
 * Determinant of a matrix.
 * @param a matrix
 * @return determinant of a
 */
public C determinant(GenMatrix<C> a) {
    FieldMatrix<CMFieldElement<C>> am = CMFieldElementUtil.<C> toCMFieldMatrix(a);

    final FieldLUDecomposition<CMFieldElement<C>> lu = new FieldLUDecomposition<CMFieldElement<C>>(am);
    CMFieldElement<C> dm = lu.getDeterminant();
    C d = dm.val;
    return d;
}
项目:java-algebra-system    文件:GaussElimination.java   
/**
 * Inverse of a matrix.
 * @param a matrix
 * @return inverse matrix of a
 */
public GenMatrix<C> inverse(GenMatrix<C> a) {
    FieldMatrix<CMFieldElement<C>> am = CMFieldElementUtil.<C> toCMFieldMatrix(a);
    final FieldLUDecomposition<CMFieldElement<C>> lu = new FieldLUDecomposition<CMFieldElement<C>>(am);
    FieldDecompositionSolver<CMFieldElement<C>> fds = lu.getSolver();
    FieldMatrix<CMFieldElement<C>> bm = fds.getInverse();
    GenMatrix<C> g = CMFieldElementUtil.<C> matrixFromCMFieldMatrix(a.ring, bm);
    return g;
}
项目:java-algebra-system    文件:GaussElimination.java   
/**
 * Solve a linear system: a x = b.
 * @param a matrix
 * @param b vector of right hand side
 * @return a solution vector x
 */
public GenVector<C> solve(GenMatrix<C> a, GenVector<C> b) {
    FieldMatrix<CMFieldElement<C>> am = CMFieldElementUtil.<C> toCMFieldMatrix(a);
    FieldVector<CMFieldElement<C>> bv = CMFieldElementUtil.<C> toCMFieldElementVector(b);

    final FieldLUDecomposition<CMFieldElement<C>> lu = new FieldLUDecomposition<CMFieldElement<C>>(am);
    FieldDecompositionSolver<CMFieldElement<C>> fds = lu.getSolver();
    FieldVector<CMFieldElement<C>> xv = fds.solve(bv);
    GenVector<C> xa = CMFieldElementUtil.<C> vectorFromCMFieldVector(b.modul, xv);
    return xa;
}
项目:astor    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param nSteps number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int nSteps) {

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(nSteps);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[nSteps];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver
        .solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[nSteps];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[nSteps];
    for (int i = 0; i < nSteps; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:astor    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param nSteps number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int nSteps) {

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(nSteps);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[nSteps];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver
        .solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[nSteps];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[nSteps];
    for (int i = 0; i < nSteps; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:astor    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param nSteps number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int nSteps) {

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(nSteps);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[nSteps];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver
        .solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[nSteps];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[nSteps];
    for (int i = 0; i < nSteps; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:astor    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param nSteps number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int nSteps) {

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(nSteps);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[nSteps];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver
        .solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[nSteps];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[nSteps];
    for (int i = 0; i < nSteps; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:astor    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param nSteps number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int nSteps) {

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(nSteps);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[nSteps];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver
        .solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[nSteps];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[nSteps];
    for (int i = 0; i < nSteps; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:idylfin    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param nSteps number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int nSteps) {

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(nSteps);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[nSteps];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver
        .solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[nSteps];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[nSteps];
    for (int i = 0; i < nSteps; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:autoredistrict    文件:AdamsNordsieckTransformer.java   
/** Simple constructor.
 * @param n number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckTransformer(final int n) {

    final int rows = n - 1;

    // compute exact coefficients
    FieldMatrix<BigFraction> bigP = buildP(rows);
    FieldDecompositionSolver<BigFraction> pSolver =
        new FieldLUDecomposition<BigFraction>(bigP).getSolver();

    BigFraction[] u = new BigFraction[rows];
    Arrays.fill(u, BigFraction.ONE);
    BigFraction[] bigC1 = pSolver.solve(new ArrayFieldVector<BigFraction>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    BigFraction[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = new BigFraction[rows];
    Arrays.fill(shiftedP[0], BigFraction.ZERO);
    FieldMatrix<BigFraction> bigMSupdate =
        pSolver.solve(new Array2DRowFieldMatrix<BigFraction>(shiftedP, false));

    // convert coefficients to double
    update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);
    c1             = new double[rows];
    for (int i = 0; i < rows; ++i) {
        c1[i] = bigC1[i].doubleValue();
    }

}
项目:autoredistrict    文件:AdamsNordsieckFieldTransformer.java   
/** Simple constructor.
 * @param field field to which the time and state vector elements belong
 * @param n number of steps of the multistep method
 * (excluding the one being computed)
 */
private AdamsNordsieckFieldTransformer(final Field<T> field, final int n) {

    this.field = field;
    final int rows = n - 1;

    // compute coefficients
    FieldMatrix<T> bigP = buildP(rows);
    FieldDecompositionSolver<T> pSolver =
        new FieldLUDecomposition<T>(bigP).getSolver();

    T[] u = MathArrays.buildArray(field, rows);
    Arrays.fill(u, field.getOne());
    c1 = pSolver.solve(new ArrayFieldVector<T>(u, false)).toArray();

    // update coefficients are computed by combining transform from
    // Nordsieck to multistep, then shifting rows to represent step advance
    // then applying inverse transform
    T[][] shiftedP = bigP.getData();
    for (int i = shiftedP.length - 1; i > 0; --i) {
        // shift rows
        shiftedP[i] = shiftedP[i - 1];
    }
    shiftedP[0] = MathArrays.buildArray(field, rows);
    Arrays.fill(shiftedP[0], field.getZero());
    update = new Array2DRowFieldMatrix<T>(pSolver.solve(new Array2DRowFieldMatrix<T>(shiftedP, false)).getData());

}
项目:SME    文件:AdamsNordsieckFieldTransformer.java   
/** Initialize the high order scaled derivatives at step start.
 * @param h step size to use for scaling
 * @param t first steps times
 * @param y first steps states
 * @param yDot first steps derivatives
 * @return Nordieck vector at start of first step (h<sup>2</sup>/2 y''<sub>n</sub>,
 * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
 */

public Array2DRowFieldMatrix<T> initializeHighOrderDerivatives(final T h, final T[] t,
                                                               final T[][] y,
                                                               final T[][] yDot) {

    // using Taylor series with di = ti - t0, we get:
    //  y(ti)  - y(t0)  - di y'(t0) =   di^2 / h^2 s2 + ... +   di^k     / h^k sk + O(h^k)
    //  y'(ti) - y'(t0)             = 2 di   / h^2 s2 + ... + k di^(k-1) / h^k sk + O(h^(k-1))
    // we write these relations for i = 1 to i= 1+n/2 as a set of n + 2 linear
    // equations depending on the Nordsieck vector [s2 ... sk rk], so s2 to sk correspond
    // to the appropriately truncated Taylor expansion, and rk is the Taylor remainder.
    // The goal is to have s2 to sk as accurate as possible considering the fact the sum is
    // truncated and we don't want the error terms to be included in s2 ... sk, so we need
    // to solve also for the remainder
    final T[][] a     = MathArrays.buildArray(field, c1.length + 1, c1.length + 1);
    final T[][] b     = MathArrays.buildArray(field, c1.length + 1, y[0].length);
    final T[]   y0    = y[0];
    final T[]   yDot0 = yDot[0];
    for (int i = 1; i < y.length; ++i) {

        final T di    = t[i].subtract(t[0]);
        final T ratio = di.divide(h);
        T dikM1Ohk    = h.reciprocal();

        // linear coefficients of equations
        // y(ti) - y(t0) - di y'(t0) and y'(ti) - y'(t0)
        final T[] aI    = a[2 * i - 2];
        final T[] aDotI = (2 * i - 1) < a.length ? a[2 * i - 1] : null;
        for (int j = 0; j < aI.length; ++j) {
            dikM1Ohk = dikM1Ohk.multiply(ratio);
            aI[j]    = di.multiply(dikM1Ohk);
            if (aDotI != null) {
                aDotI[j]  = dikM1Ohk.multiply(j + 2);
            }
        }

        // expected value of the previous equations
        final T[] yI    = y[i];
        final T[] yDotI = yDot[i];
        final T[] bI    = b[2 * i - 2];
        final T[] bDotI = (2 * i - 1) < b.length ? b[2 * i - 1] : null;
        for (int j = 0; j < yI.length; ++j) {
            bI[j]    = yI[j].subtract(y0[j]).subtract(di.multiply(yDot0[j]));
            if (bDotI != null) {
                bDotI[j] = yDotI[j].subtract(yDot0[j]);
            }
        }

    }

    // solve the linear system to get the best estimate of the Nordsieck vector [s2 ... sk],
    // with the additional terms s(k+1) and c grabbing the parts after the truncated Taylor expansion
    final FieldLUDecomposition<T> decomposition = new FieldLUDecomposition<T>(new Array2DRowFieldMatrix<T>(a, false));
    final FieldMatrix<T> x = decomposition.getSolver().solve(new Array2DRowFieldMatrix<T>(b, false));

    // extract just the Nordsieck vector [s2 ... sk]
    final Array2DRowFieldMatrix<T> truncatedX =
                    new Array2DRowFieldMatrix<T>(field, x.getRowDimension() - 1, x.getColumnDimension());
    for (int i = 0; i < truncatedX.getRowDimension(); ++i) {
        for (int j = 0; j < truncatedX.getColumnDimension(); ++j) {
            truncatedX.setEntry(i, j, x.getEntry(i, j));
        }
    }
    return truncatedX;

}
项目:autoredistrict    文件:AdamsNordsieckFieldTransformer.java   
/** Initialize the high order scaled derivatives at step start.
 * @param h step size to use for scaling
 * @param t first steps times
 * @param y first steps states
 * @param yDot first steps derivatives
 * @return Nordieck vector at start of first step (h<sup>2</sup>/2 y''<sub>n</sub>,
 * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
 */

public Array2DRowFieldMatrix<T> initializeHighOrderDerivatives(final T h, final T[] t,
                                                               final T[][] y,
                                                               final T[][] yDot) {

    // using Taylor series with di = ti - t0, we get:
    //  y(ti)  - y(t0)  - di y'(t0) =   di^2 / h^2 s2 + ... +   di^k     / h^k sk + O(h^k)
    //  y'(ti) - y'(t0)             = 2 di   / h^2 s2 + ... + k di^(k-1) / h^k sk + O(h^(k-1))
    // we write these relations for i = 1 to i= 1+n/2 as a set of n + 2 linear
    // equations depending on the Nordsieck vector [s2 ... sk rk], so s2 to sk correspond
    // to the appropriately truncated Taylor expansion, and rk is the Taylor remainder.
    // The goal is to have s2 to sk as accurate as possible considering the fact the sum is
    // truncated and we don't want the error terms to be included in s2 ... sk, so we need
    // to solve also for the remainder
    final T[][] a     = MathArrays.buildArray(field, c1.length + 1, c1.length + 1);
    final T[][] b     = MathArrays.buildArray(field, c1.length + 1, y[0].length);
    final T[]   y0    = y[0];
    final T[]   yDot0 = yDot[0];
    for (int i = 1; i < y.length; ++i) {

        final T di    = t[i].subtract(t[0]);
        final T ratio = di.divide(h);
        T dikM1Ohk    = h.reciprocal();

        // linear coefficients of equations
        // y(ti) - y(t0) - di y'(t0) and y'(ti) - y'(t0)
        final T[] aI    = a[2 * i - 2];
        final T[] aDotI = (2 * i - 1) < a.length ? a[2 * i - 1] : null;
        for (int j = 0; j < aI.length; ++j) {
            dikM1Ohk = dikM1Ohk.multiply(ratio);
            aI[j]    = di.multiply(dikM1Ohk);
            if (aDotI != null) {
                aDotI[j]  = dikM1Ohk.multiply(j + 2);
            }
        }

        // expected value of the previous equations
        final T[] yI    = y[i];
        final T[] yDotI = yDot[i];
        final T[] bI    = b[2 * i - 2];
        final T[] bDotI = (2 * i - 1) < b.length ? b[2 * i - 1] : null;
        for (int j = 0; j < yI.length; ++j) {
            bI[j]    = yI[j].subtract(y0[j]).subtract(di.multiply(yDot0[j]));
            if (bDotI != null) {
                bDotI[j] = yDotI[j].subtract(yDot0[j]);
            }
        }

    }

    // solve the linear system to get the best estimate of the Nordsieck vector [s2 ... sk],
    // with the additional terms s(k+1) and c grabbing the parts after the truncated Taylor expansion
    final FieldLUDecomposition<T> decomposition = new FieldLUDecomposition<T>(new Array2DRowFieldMatrix<T>(a, false));
    final FieldMatrix<T> x = decomposition.getSolver().solve(new Array2DRowFieldMatrix<T>(b, false));

    // extract just the Nordsieck vector [s2 ... sk]
    final Array2DRowFieldMatrix<T> truncatedX =
                    new Array2DRowFieldMatrix<T>(field, x.getRowDimension() - 1, x.getColumnDimension());
    for (int i = 0; i < truncatedX.getRowDimension(); ++i) {
        for (int j = 0; j < truncatedX.getColumnDimension(); ++j) {
            truncatedX.setEntry(i, j, x.getEntry(i, j));
        }
    }
    return truncatedX;

}