Java 类org.apache.commons.math3.linear.RectangularCholeskyDecomposition 实例源码

项目:SME    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:SME    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:CARMA    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:CARMA    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:astor    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:idylfin    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:idylfin    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:autoredistrict    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a correlated random vector generator from its mean
 * vector and covariance matrix.
 *
 * @param mean Expected mean values for all components.
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded
 * @param generator underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 * @throws DimensionMismatchException if the mean and covariance
 * arrays dimensions do not match.
 */
public CorrelatedRandomVectorGenerator(double[] mean,
                                       RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    if (mean.length != order) {
        throw new DimensionMismatchException(mean.length, order);
    }
    this.mean = mean.clone();

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}
项目:autoredistrict    文件:CorrelatedRandomVectorGenerator.java   
/**
 * Builds a null mean random correlated vector generator from its
 * covariance matrix.
 *
 * @param covariance Covariance matrix.
 * @param small Diagonal elements threshold under which  column are
 * considered to be dependent on previous ones and are discarded.
 * @param generator Underlying generator for uncorrelated normalized
 * components.
 * @throws org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException
 * if the covariance matrix is not strictly positive definite.
 */
public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small,
                                       NormalizedRandomGenerator generator) {
    int order = covariance.getRowDimension();
    mean = new double[order];
    for (int i = 0; i < order; ++i) {
        mean[i] = 0;
    }

    final RectangularCholeskyDecomposition decomposition =
        new RectangularCholeskyDecomposition(covariance, small);
    root = decomposition.getRootMatrix();

    this.generator = generator;
    normalized = new double[decomposition.getRank()];

}