private void updateStatus(MRApp app, TaskAttempt attempt, Phase phase) { TaskAttemptStatusUpdateEvent.TaskAttemptStatus status = new TaskAttemptStatusUpdateEvent.TaskAttemptStatus(); status.counters = new Counters(); status.fetchFailedMaps = new ArrayList<TaskAttemptId>(); status.id = attempt.getID(); status.mapFinishTime = 0; status.phase = phase; status.progress = 0.5f; status.shuffleFinishTime = 0; status.sortFinishTime = 0; status.stateString = "OK"; status.taskState = attempt.getState(); TaskAttemptStatusUpdateEvent event = new TaskAttemptStatusUpdateEvent(attempt.getID(), status); app.getContext().getEventHandler().handle(event); }
public static Phase toYarn(org.apache.hadoop.mapred.TaskStatus.Phase phase) { switch (phase) { case STARTING: return Phase.STARTING; case MAP: return Phase.MAP; case SHUFFLE: return Phase.SHUFFLE; case SORT: return Phase.SORT; case REDUCE: return Phase.REDUCE; case CLEANUP: return Phase.CLEANUP; } throw new YarnRuntimeException("Unrecognized Phase: " + phase); }
/** * test some methods of CompletedTaskAttempt */ @Test (timeout=5000) public void testCompletedTaskAttempt(){ TaskAttemptInfo attemptInfo= mock(TaskAttemptInfo.class); when(attemptInfo.getRackname()).thenReturn("Rackname"); when(attemptInfo.getShuffleFinishTime()).thenReturn(11L); when(attemptInfo.getSortFinishTime()).thenReturn(12L); when(attemptInfo.getShufflePort()).thenReturn(10); JobID jobId= new JobID("12345",0); TaskID taskId =new TaskID(jobId,TaskType.REDUCE, 0); TaskAttemptID taskAttemptId= new TaskAttemptID(taskId, 0); when(attemptInfo.getAttemptId()).thenReturn(taskAttemptId); CompletedTaskAttempt taskAttemt= new CompletedTaskAttempt(null,attemptInfo); assertEquals( "Rackname", taskAttemt.getNodeRackName()); assertEquals( Phase.CLEANUP, taskAttemt.getPhase()); assertTrue( taskAttemt.isFinished()); assertEquals( 11L, taskAttemt.getShuffleFinishTime()); assertEquals( 12L, taskAttemt.getSortFinishTime()); assertEquals( 10, taskAttemt.getShufflePort()); }
public static Phase toYarn(org.apache.hadoop.mapred.TaskStatus.Phase phase) { switch (phase) { case STARTING: return Phase.STARTING; case MAP: return Phase.MAP; case SHUFFLE: return Phase.SHUFFLE; case SORT: return Phase.SORT; case REDUCE: return Phase.REDUCE; case CLEANUP: return Phase.CLEANUP; default: break; } throw new YarnRuntimeException("Unrecognized Phase: " + phase); }
@Override public Phase getPhase() { readLock.lock(); try { return reportedStatus.phase; } finally { readLock.unlock(); } }
private void initTaskAttemptStatus(TaskAttemptStatus result) { result.progress = 0.0f; result.phase = Phase.STARTING; result.stateString = "NEW"; result.taskState = TaskAttemptState.NEW; Counters counters = EMPTY_COUNTERS; result.counters = counters; }
@Override public void transition(JobImpl job, JobEvent event) { //get number of shuffling reduces int shufflingReduceTasks = 0; for (TaskId taskId : job.reduceTasks) { Task task = job.tasks.get(taskId); if (TaskState.RUNNING.equals(task.getState())) { for(TaskAttempt attempt : task.getAttempts().values()) { if(attempt.getPhase() == Phase.SHUFFLE) { shufflingReduceTasks++; break; } } } } JobTaskAttemptFetchFailureEvent fetchfailureEvent = (JobTaskAttemptFetchFailureEvent) event; for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId : fetchfailureEvent.getMaps()) { Integer fetchFailures = job.fetchFailuresMapping.get(mapId); fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1); job.fetchFailuresMapping.put(mapId, fetchFailures); float failureRate = shufflingReduceTasks == 0 ? 1.0f : (float) fetchFailures / shufflingReduceTasks; // declare faulty if fetch-failures >= max-allowed-failures if (fetchFailures >= job.getMaxFetchFailuresNotifications() && failureRate >= job.getMaxAllowedFetchFailuresFraction()) { LOG.info("Too many fetch-failures for output of task attempt: " + mapId + " ... raising fetch failure to map"); job.eventHandler.handle(new TaskAttemptEvent(mapId, TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE)); job.fetchFailuresMapping.remove(mapId); } } }
@Override public Phase getPhase() { TaskAttemptReportProtoOrBuilder p = viaProto ? proto : builder; if (!p.hasPhase()) { return null; } return convertFromProtoFormat(p.getPhase()); }
@Override public void setPhase(Phase phase) { maybeInitBuilder(); if (phase == null) { builder.clearPhase(); return; } builder.setPhase(convertToProtoFormat(phase)); }
@Override public void transition(JobImpl job, JobEvent event) { //get number of shuffling reduces int shufflingReduceTasks = 0; for (TaskId taskId : job.reduceTasks) { Task task = job.tasks.get(taskId); if (TaskState.RUNNING.equals(task.getState())) { for(TaskAttempt attempt : task.getAttempts().values()) { if(attempt.getPhase() == Phase.SHUFFLE) { shufflingReduceTasks++; break; } } } } JobTaskAttemptFetchFailureEvent fetchfailureEvent = (JobTaskAttemptFetchFailureEvent) event; for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId : fetchfailureEvent.getMaps()) { Integer fetchFailures = job.fetchFailuresMapping.get(mapId); fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1); job.fetchFailuresMapping.put(mapId, fetchFailures); float failureRate = shufflingReduceTasks == 0 ? 1.0f : (float) fetchFailures / shufflingReduceTasks; // declare faulty if fetch-failures >= max-allowed-failures if (fetchFailures >= job.getMaxFetchFailuresNotifications() && failureRate >= job.getMaxAllowedFetchFailuresFraction()) { LOG.info("Too many fetch-failures for output of task attempt: " + mapId + " ... raising fetch failure to map"); job.eventHandler.handle(new TaskAttemptTooManyFetchFailureEvent(mapId, fetchfailureEvent.getReduce(), fetchfailureEvent.getHost())); job.fetchFailuresMapping.remove(mapId); } } }