public static void main(String[] args) throws Exception { System.setProperty("hadoop.home.dir", "E:\\hadoop"); SparkConf sparkConf = new SparkConf().setAppName("WordCountSocketEx").setMaster("local[*]"); JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1)); streamingContext.checkpoint("E:\\hadoop\\checkpoint"); // Initial state RDD input to mapWithState @SuppressWarnings("unchecked") List<Tuple2<String, Integer>> tuples =Arrays.asList(new Tuple2<>("hello", 1), new Tuple2<>("world", 1)); JavaPairRDD<String, Integer> initialRDD = streamingContext.sparkContext().parallelizePairs(tuples); JavaReceiverInputDStream<String> StreamingLines = streamingContext.socketTextStream( "10.0.75.1", Integer.parseInt("9000"), StorageLevels.MEMORY_AND_DISK_SER); JavaDStream<String> words = StreamingLines.flatMap( str -> Arrays.asList(str.split(" ")).iterator() ); JavaPairDStream<String, Integer> wordCounts = words.mapToPair(str-> new Tuple2<>(str, 1)).reduceByKey((count1,count2) ->count1+count2 ); // Update the cumulative count function Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc = new Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>>() { @Override public Tuple2<String, Integer> call(String word, Optional<Integer> one, State<Integer> state) { int sum = one.orElse(0) + (state.exists() ? state.get() : 0); Tuple2<String, Integer> output = new Tuple2<>(word, sum); state.update(sum); return output; } }; // DStream made of get cumulative counts that get updated in every batch JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> stateDstream = wordCounts.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD)); stateDstream.print(); streamingContext.start(); streamingContext.awaitTermination(); }
public static void main(String[] args) throws InterruptedException { System.setProperty("hadoop.home.dir", "C:\\softwares\\Winutils"); SparkSession sparkSession = SparkSession.builder().master("local[*]").appName("Stateful Streaming Example") .config("spark.sql.warehouse.dir", "file:////C:/Users/sgulati/spark-warehouse").getOrCreate(); JavaStreamingContext jssc= new JavaStreamingContext(new JavaSparkContext(sparkSession.sparkContext()), Durations.milliseconds(1000)); JavaReceiverInputDStream<String> inStream = jssc.socketTextStream("10.204.136.223", 9999); jssc.checkpoint("C:\\Users\\sgulati\\spark-checkpoint"); JavaDStream<FlightDetails> flightDetailsStream = inStream.map(x -> { ObjectMapper mapper = new ObjectMapper(); return mapper.readValue(x, FlightDetails.class); }); JavaPairDStream<String, FlightDetails> flightDetailsPairStream = flightDetailsStream .mapToPair(f -> new Tuple2<String, FlightDetails>(f.getFlightId(), f)); Function3<String, Optional<FlightDetails>, State<List<FlightDetails>>, Tuple2<String, Double>> mappingFunc = ( flightId, curFlightDetail, state) -> { List<FlightDetails> details = state.exists() ? state.get() : new ArrayList<>(); boolean isLanded = false; if (curFlightDetail.isPresent()) { details.add(curFlightDetail.get()); if (curFlightDetail.get().isLanded()) { isLanded = true; } } Double avgSpeed = details.stream().mapToDouble(f -> f.getTemperature()).average().orElse(0.0); if (isLanded) { state.remove(); } else { state.update(details); } return new Tuple2<String, Double>(flightId, avgSpeed); }; JavaMapWithStateDStream<String, FlightDetails, List<FlightDetails>, Tuple2<String, Double>> streamWithState = flightDetailsPairStream .mapWithState(StateSpec.function(mappingFunc).timeout(Durations.minutes(5))); streamWithState.print(); jssc.start(); jssc.awaitTermination(); }
protected static JavaStreamingContext createContext(String ip, int port, String checkpointDirectory) { SparkConf sparkConf = new SparkConf().setAppName("WordCountRecoverableEx").setMaster("local[*]"); JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1)); streamingContext.checkpoint(checkpointDirectory); // Initial state RDD input to mapWithState @SuppressWarnings("unchecked") List<Tuple2<String, Integer>> tuples = Arrays.asList(new Tuple2<>("hello", 1), new Tuple2<>("world", 1)); JavaPairRDD<String, Integer> initialRDD = streamingContext.sparkContext().parallelizePairs(tuples); JavaReceiverInputDStream<String> StreamingLines = streamingContext.socketTextStream(ip,port, StorageLevels.MEMORY_AND_DISK_SER); JavaDStream<String> words = StreamingLines.flatMap(str -> Arrays.asList(str.split(" ")).iterator()); JavaPairDStream<String, Integer> wordCounts = words.mapToPair(str -> new Tuple2<>(str, 1)) .reduceByKey((count1, count2) -> count1 + count2); // Update the cumulative count function Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc = new Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>>() { @Override public Tuple2<String, Integer> call(String word, Optional<Integer> one, State<Integer> state) { int sum = one.orElse(0) + (state.exists() ? state.get() : 0); Tuple2<String, Integer> output = new Tuple2<>(word, sum); state.update(sum); return output; } }; // DStream made of get cumulative counts that get updated in every batch JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> stateDstream = wordCounts .mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD)); stateDstream.print(); return streamingContext; }