/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(7); newVector .addElement(new Option("\tPopulation size", "L", 1, "-L <integer>")); newVector.addElement(new Option("\tDescendant population size", "A", 1, "-A <integer>")); newVector .addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>")); newVector.addElement(new Option("\tUse mutation.\n\t(default true)", "M", 0, "-M")); newVector.addElement(new Option("\tUse cross-over.\n\t(default true)", "C", 0, "-C")); newVector .addElement(new Option( "\tUse tournament selection (true) or maximum subpopulatin (false).\n\t(default false)", "O", 0, "-O")); newVector .addElement(new Option("\tRandom number seed", "R", 1, "-R <seed>")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Executes the tests, use "-h" to list the commandline options. * * @param args the commandline parameters * @throws Exception if something goes wrong */ public static void main(String[] args) throws Exception { CheckSource check; StringBuffer text; Enumeration<Option> enm; check = new CheckSource(); if (Utils.getFlag('h', args)) { text = new StringBuffer(); text.append("\nHelp requested:\n\n"); enm = check.listOptions(); while (enm.hasMoreElements()) { Option option = enm.nextElement(); text.append(option.synopsis() + "\n"); text.append(option.description() + "\n"); } System.out.println("\n" + text + "\n"); } else { check.setOptions(args); if (check.execute()) { System.out.println("Tests OK!"); } else { System.out.println("Tests failed!"); } } }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(4); newVector.addElement(new Option("\tTabu list length", "L", 1, "-L <integer>")); newVector .addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>")); newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P <nr of parents>")); newVector.addElement(new Option( "\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = enumToVector(super.listOptions()); result.addElement(new Option("\tThe noise rate in percent (default " + defaultNoiseRate() + ").\n" + "\tCan be between 0% and 30%. (Remark: The original \n" + "\talgorithm only allows noise up to 10%.)", "P", 1, "-P <num>")); result.addElement(new Option("\tA cluster definition of class '" + SubspaceClusterDefinition.class.getName().replaceAll(".*\\.", "") + "'\n" + "\t(definition needs to be quoted to be recognized as \n" + "\ta single argument).", "C", 1, "-C <cluster-definition>")); result.addElement(new Option("", "", 0, "\nOptions specific to " + SubspaceClusterDefinition.class.getName() + ":")); result.addAll(enumToVector(new SubspaceClusterDefinition(this) .listOptions())); return result.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result .addElement(new Option( "\tWhen determining whether an edge exists a search is performed \n" + "\tfor a set Z that separates the nodes. MaxCardinality determines \n" + "\tthe maximum size of the set Z. This greatly influences the \n" + "\tlength of the search. (default 2)", "cardinality", 1, "-cardinality <num>")); result.addAll(Collections.list(super.listOptions())); return result.elements(); }
/** * Lists the available options * * @return an enumeration of the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.add(new Option("\tEnables debug output.\n" + "\t(default: off)", "D", 0, "-D")); result.add(new Option("\tStores the filename in an additional attribute.\n" + "\t(default: off)", "F", 0, "-F")); result.add(new Option("\tThe directory to work on.\n" + "\t(default: current directory)", "dir", 0, "-dir <directory>")); result.add(new Option("\tThe character set to use, e.g UTF-8.\n\t" + "(default: use the default character set)", "charset", 1, "-charset <charset name>")); return result.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(4); newVector.addElement(new Option( "\tSpecify the random number seed (default 1)", "S", 1, "-S <num>")); newVector .addElement(new Option( "\tThe maximum class distribution spread.\n" + "\t0 = no maximum spread, 1 = uniform distribution, 10 = allow at most\n" + "\ta 10:1 ratio between the classes (default 0)", "M", 1, "-M <num>")); newVector.addElement(new Option( "\tAdjust weights so that total weight per class is maintained.\n" + "\tIndividual instance weighting is not preserved. (default no\n" + "\tweights adjustment", "W", 0, "-W")); newVector.addElement(new Option( "\tThe maximum count for any class value (default 0 = unlimited).\n", "X", 0, "-X <num>")); return newVector.elements(); }
/** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option( "\tThe name of the database field to cache over.\n" + "\teg: \"Fold\" (default none)", "F", 1, "-F <field name>")); newVector.addElement(new Option( "\tThe full class name of a ResultProducer.\n" + "\teg: weka.experiment.CrossValidationResultProducer", "W", 1, "-W <class name>")); if ((m_ResultProducer != null) && (m_ResultProducer instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to result producer " + m_ResultProducer.getClass().getName() + ":")); newVector.addAll(Collections.list(((OptionHandler) m_ResultProducer) .listOptions())); } return newVector.elements(); }
/** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(); newVector.addElement(new Option( "\tApplies a Markov Blanket correction to the network structure, \n" + "\tafter a network structure is learned. This ensures that all \n" + "\tnodes in the network are part of the Markov blanket of the \n" + "\tclassifier node.", "mbc", 0, "-mbc")); newVector.addElement(new Option( "\tScore type (LOO-CV,k-Fold-CV,Cumulative-CV)", "S", 1, "-S [LOO-CV|k-Fold-CV|Cumulative-CV]")); newVector.addElement(new Option( "\tUse probabilistic or 0/1 scoring.\n\t(default probabilistic scoring)", "Q", 0, "-Q")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option( "\tminimum allowable standard deviation for normal density computation " + "\n\t(default 1e-6)", "M", 1, "-M <num>")); result.addElement(new Option("\tClusterer to wrap.\n" + "\t(default " + defaultClustererString() + ")", "W", 1, "-W <clusterer name>")); result.addAll(Collections.list(super.listOptions())); if ((m_wrappedClusterer != null) && (m_wrappedClusterer instanceof OptionHandler)) { result.addElement(new Option("", "", 0, "\nOptions specific to clusterer " + m_wrappedClusterer.getClass().getName() + ":")); result.addAll(Collections.list(((OptionHandler) m_wrappedClusterer) .listOptions())); } return result.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(3); result.addElement(new Option( "\tThe minimum frequency for a value to remain (default: 2).\n", "-N", 1, "-N <int>")); result .addElement(new Option( "\tSets list of attributes to act on (or its inverse). 'first and 'last' are accepted as well.'\n" + "\tE.g.: first-5,7,9,20-last\n" + "\t(default: 1,2)", "R", 1, "-R <range>")); result .addElement(new Option( "\tInvert matching sense (i.e. act on all attributes not specified in list)", "V", 0, "-V")); result.addElement(new Option("\tUse short IDs for merged attribute values.", "S", 0, "-S")); result.addAll(Collections.list(super.listOptions())); return result.elements(); }
/** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(4); newVector.addElement(new Option("\tIndex of the attribute to be changed \n" + "\t(default last attribute)", "C", 1, "-C <col>")); newVector.addElement(new Option( "\tTreat missing values as an extra value \n", "M", 1, "-M")); newVector.addElement(new Option( "\tSpecify the percentage of noise introduced \n" + "\tto the data (default 10)", "P", 1, "-P <num>")); newVector.addElement(new Option( "\tSpecify the random number seed (default 1)", "S", 1, "-S <num>")); return newVector.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option( "\tSpecifies list of instances to select. First and last\n" + "\tare valid indexes. (required)\n", "R", 1, "-R <inst1,inst2-inst4,...>")); newVector.addElement(new Option( "\tSpecifies if inverse of selection is to be output.\n", "V", 0, "-V")); return newVector.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = Option.listOptionsForClassHierarchy(this.getClass(), AbstractClassifier.class); newVector.addElement(new Option( "\tIf set, classifier is run in debug mode and\n" + "\tmay output additional info to the console", "output-debug-info", 0, "-output-debug-info")); newVector .addElement(new Option( "\tIf set, classifier capabilities are not checked before classifier is built\n" + "\t(use with caution).", "-do-not-check-capabilities", 0, "-do-not-check-capabilities")); newVector.addElement(new Option( "\tThe number of decimal places for the output of numbers in the model" + " (default " + m_numDecimalPlaces + ").", "num-decimal-places", 1, "-num-decimal-places")); return newVector.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(3); newVector.addElement(new Option( "\tSets the attribute index (default last).", "C", 1, "-C <col>")); newVector.addElement(new Option( "\tSets the first value's index (default first).", "F", 1, "-F <value index>")); newVector.addElement(new Option( "\tSets the second value's index (default last).", "S", 1, "-S <value index>")); return newVector.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(); newVector.addElement(new Option( "\tThe seed for the random number generator used\n" + "\tin selecting random anchor.\n" + "(default: 1)", "S", 1, "-S <num>")); newVector.addElement(new Option("\tUse randomly chosen initial anchors.", "R", 0, "-R")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option( "\tThe class index (first and last are valid as well).\n" + "\t(default: last)", "C", 1, "-C <class index>")); result.addElement(new Option("\tCompresses the data (uses '" + XRFFLoader.FILE_EXTENSION_COMPRESSED + "' as extension instead of '" + XRFFLoader.FILE_EXTENSION + "')\n" + "\t(default: off)", "compress", 0, "-compress")); result.addAll(Collections.list(super.listOptions())); return result.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option( "\tThe classifier (incl. options) that was used to generate\n" + "\tthe source code.", "W", 1, "-W <classname and options>")); result.addElement(new Option( "\tThe classname of the generated source code.", "S", 1, "-S <classname>")); result.addElement(new Option( "\tThe training set with which the source code was generated.", "t", 1, "-t <file>")); result.addElement(new Option( "\tThe class index of the training set. 'first' and 'last' are\n" + "\tvalid indices.\n" + "\t(default: last)", "c", 1, "-c <index>")); return result.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("\tCenter (rather than standardize) the" + "\n\tdata and compute PCA using the covariance (rather" + "\n\t than the correlation) matrix.", "C", 0, "-C")); result.addElement(new Option("\tRetain enough PC attributes to account\n" + "\tfor this proportion of variance in the original data.\n" + "\t(default: 0.95)", "R", 1, "-R <num>")); result.addElement(new Option( "\tMaximum number of attributes to include in \n" + "\ttransformed attribute names.\n" + "\t(-1 = include all, default: 5)", "A", 1, "-A <num>")); result.addElement(new Option( "\tMaximum number of PC attributes to retain.\n" + "\t(-1 = include all, default: -1)", "M", 1, "-M <num>")); return result.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); Enumeration<Option> enm = super.listOptions(); while (enm.hasMoreElements()) result.add(enm.nextElement()); result.addElement(new Option( "\t" + stopwordsTipText() + "\n" + "\t(default: .)", "stopwords", 1, "-stopwords <file>")); return result.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option("\tFull name of clusterer to use. eg:\n" + "\t\tweka.clusterers.EM\n" + "\tAdditional options after the '--'.\n" + "\t(default: weka.clusterers.EM)", "W", 1, "-W <clusterer name>")); newVector.addElement(new Option( "\tThe range of attributes the clusterer should ignore." + "\n\t(the class attribute is automatically ignored)", "I", 1, "-I <att1,att2-att4,...>")); return newVector.elements(); }
@Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.add(new Option( "\tPath to model file to use for scoring (can be \n\t" + "local or in HDFS", "model-file", 1, "-model-file <path to model file>")); result.add(new Option( "\tColumns to output in the scored data. Specify as\n\t" + "a range, e.g. 1,4,5,10-last (default = first-last).", "columns-to-output", 1, "-columns-to-output")); result.add(new Option("", "", 0, "\nOptions specific to ARFF training header creation:")); ArffHeaderHadoopJob tempArffJob = new ArffHeaderHadoopJob(); Enumeration<Option> arffOpts = tempArffJob.listOptions(); while (arffOpts.hasMoreElements()) { result.add(arffOpts.nextElement()); } return result.elements(); }
/** * get information from the classifier about what options (parameters) it accepts * so that we can build our parameter search space dynamically. * TODO this should be used in future iterations if possible; weka conventions do * TODO not make this economical at the moment, but it should be kept in mind! */ public String[] get_info(){ Enumeration<Option> info = classifier.listOptions(); ArrayList<String> parameter_descriptions = new ArrayList<String>(); while(info.hasMoreElements()){ Option elt = info.nextElement(); parameter_descriptions.add(elt.synopsis()); parameter_descriptions.add(elt.description()); } String[] arr = parameter_descriptions.toArray(new String[parameter_descriptions.size()]); return(arr); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(); newVector.addElement(new Option("\tNumber of trees to build.\n\t(default 100)", "I", 1, "-I <number of trees>")); newVector.addElement(new Option( "\tNumber of features to consider (<1=int(log_2(#predictors)+1)).\n\t(default 0)", "K", 1, "-K <number of features>")); newVector.addElement(new Option("\tSeed for random number generator.\n" + "\t(default 1)", "S", 1, "-S")); newVector.addElement(new Option( "\tThe maximum depth of the trees, 0 for unlimited.\n" + "\t(default 0)", "depth", 1, "-depth <num>")); newVector.addElement(new Option("\tDon't calculate the out of bag error.", "O", 0, "-O")); newVector.addElement(new Option( "\tPrint the individual trees in the output", "print", 0, "-print")); newVector.addElement(new Option("\tNumber of execution slots.\n" + "\t(default 1 - i.e. no parallelism)", "num-slots", 1, "-num-slots <num>")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Lists the command-line options for this classifier. * * @return an enumeration over all possible options */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(); newVector.addElement(new Option( "\tNumber of attributes to randomly investigate.\t(default 0)\n" + "\t(<0 = int(log_2(#predictors)+1)).", "K", 1, "-K <number of attributes>")); newVector.addElement(new Option( "\tSet minimum number of instances per leaf.\n\t(default 1)", "M", 1, "-M <minimum number of instances>")); newVector.addElement(new Option( "\tSet minimum numeric class variance proportion\n" + "\tof train variance for split (default 1e-3).", "V", 1, "-V <minimum variance for split>")); newVector.addElement(new Option("\tSeed for random number generator.\n" + "\t(default 1)", "S", 1, "-S <num>")); newVector.addElement(new Option( "\tThe maximum depth of the tree, 0 for unlimited.\n" + "\t(default 0)", "depth", 1, "-depth <num>")); newVector.addElement(new Option("\tNumber of folds for backfitting " + "(default 0, no backfitting).", "N", 1, "-N <num>")); newVector.addElement(new Option("\tAllow unclassified instances.", "U", 0, "-U")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Returns an enumeration that lists the command-line options that are available * * @return the list of options as an enumeration */ @Override public Enumeration<Option> listOptions() { Vector<Option> options = new Vector<Option>(); options.addElement(new Option("\tNumber of components to use (default: -1).", "N", 1, "-N")); options.addElement(new Option("\tMaximum number of components to use (default: 5).", "M", 1, "-M")); options.addElement(new Option("\tSeed for the random number generator (default: 1).", "S", 1, "-S")); options.addElement(new Option("\tThe number of bootstrap runs to use (default: 10).", "B", 1, "-B")); options.addElement(new Option("\tUse normalized entropy instead of bootstrap.", "E", 1, "-E")); return options.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(1); newVector.addElement(new Option( "\tRandom number seed.\n" + "\t(default 1)", "S", 1, "-S <num>")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(1); newVector.addElement(new Option("\tWhether to use K2 prior.\n", "k2", 0, "-k2")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(); newVector.addElement(new Option("\tBall splitting algorithm to use.", "S", 1, "-S <classname and options>")); newVector.addAll(Collections.list(super.listOptions())); return newVector.elements(); }
/** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(1); newVector.addAll(Collections.list(super.listOptions())); newVector.addElement(new Option( "\tName of a directory to search for cost files when loading\n" + "\tcosts on demand (default current directory).", "D", 1, "-D <directory>")); return newVector.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(1); newVector.addElement(new Option( "\tSets the range of attribute indices (default last).", "R", 1, "-R <col>")); newVector.addElement(new Option("\tInvert the range specified by -R.", "V", 1, "-V <col>")); return newVector.elements(); }
/** * prints all the options to stdout */ protected static void printOptions(OptionHandler o) { Enumeration<Option> enm = o.listOptions(); System.out.println("Options for " + o.getClass().getName() + ":\n"); while (enm.hasMoreElements()) { Option option = enm.nextElement(); System.out.println(option.synopsis()); System.out.println(option.description()); } }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. **/ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(2); newVector.addElement(new Option("\ttreat missing values as a seperate " + "value.", "M", 0, "-M")); newVector.addElement(new Option( "\tjust binarize numeric attributes instead \n" + "\tof properly discretizing them.", "B", 0, "-B")); return newVector.elements(); }
@Override public Enumeration<Option> listOptions() { Vector<Option> opts = new Vector<Option>(5); opts .addElement(new Option( "\tSpecify list of attributes to replace missing values for " + "\n\t(as weka range list of indices or a comma separated list of attribute names).\n" + "\t(default: consider all attributes)", "R", 1, "-A <index1,index2-index4,... | att-name1,att-name2,...>")); opts.addElement(new Option( "\tSpecify the replacement constant for nominal/string attributes", "N", 1, "-N")); opts.addElement(new Option( "\tSpecify the replacement constant for numeric attributes" + "\n\t(default: 0)", "R", 1, "-R")); opts.addElement(new Option( "\tSpecify the replacement constant for date attributes", "D", 1, "-D")); opts.addElement(new Option( "\tSpecify the date format for parsing the replacement date constant" + "\n\t(default: yyyy-MM-dd'T'HH:mm:ss)", "F", 1, "-F")); opts.addAll(Collections.list(super.listOptions())); return opts.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("\tThe Exponent to use.\n" + "\t(default: 1.0)", "E", 1, "-E <num>")); result.addElement(new Option("\tUse lower-order terms.\n" + "\t(default: no)", "L", 0, "-L")); result.addAll(Collections.list(super.listOptions())); return result.elements(); }
/** * Make up the help string giving all the command line options. * * @param script the script to include options for * @return a string detailing the valid command line options */ protected static String makeOptionString(Script script) { StringBuffer result; Enumeration<Option> enm; Option option; result = new StringBuffer(""); result.append("\nHelp requested:\n\n"); result.append("-h or -help\n"); result.append("\tDisplays this help screen.\n"); result.append("-s <file>\n"); result.append("\tThe script to execute.\n"); enm = script.listOptions(); while (enm.hasMoreElements()) { option = enm.nextElement(); result.append(option.synopsis() + '\n'); result.append(option.description() + "\n"); } result.append("\n"); result.append("Any additional options are passed on to the script as\n"); result.append("command-line parameters.\n"); result.append("\n"); return result.toString(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> newVector = new Vector<Option>(); newVector.add(new Option("\tThe leaf prediction strategy to use. 0 = " + "majority class, 1 = naive Bayes, 2 = naive Bayes adaptive.\n\t" + "(default = 2)", "L", 1, "-L")); newVector.add(new Option("\tThe splitting criterion to use. 0 = " + "Gini, 1 = Info gain\n\t" + "(default = 1)", "S", 1, "-S")); newVector.add(new Option("\tThe allowable error in a split decision " + "- values closer to zero will take longer to decide\n\t" + "(default = 1e-7)", "E", 1, "-E")); newVector.add(new Option( "\tThreshold below which a split will be forced to " + "break ties\n\t(default = 0.05)", "H", 1, "-H")); newVector.add(new Option( "\tMinimum fraction of weight required down at least two " + "branches for info gain splitting\n\t(default = 0.01)", "M", 1, "-M")); newVector.add(new Option("\tGrace period - the number of instances " + "a leaf should observe between split attempts\n\t" + "(default = 200)", "G", 1, "-G")); newVector .add(new Option("\tThe number of instances (weight) a leaf " + "should observe before allowing naive Bayes to make " + "predictions (NB or NB adaptive only)\n\t(default = 0)", "N", 1, "-N")); newVector.add(new Option("\tPrint leaf models when using naive Bayes " + "at the leaves.", "P", 0, "-P")); return newVector.elements(); }
@Override public Enumeration<Option> listOptions() { Vector<Option> opts = new Vector<Option>(); opts.add(new Option( "\tIgnore missing values (rather than replace with mean).", "ignore-missing", 0, "-ignore-missing")); opts.add(new Option("\tKeep class attribute (if set).", "keep-class", 0, "-keep-class")); opts.add(new Option( "\tFinal result is covariance rather than correlation.", "covariance", 0, "-covariance")); return opts.elements(); }
/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option( "\tUnsets the class index temporarily before the filter is\n" + "\tapplied to the data.\n" + "\t(default: no)", "unset-class-temporarily", 1, "-unset-class-temporarily")); return result.elements(); }