Java 类weka.core.Range 实例源码

项目:repo.kmeanspp.silhouette_score    文件:ClusterEvaluation.java   
/**
 * Builds a string listing the attribute values in a specified range of
 * indices, separated by commas and enclosed in brackets.
 * 
 * @param instance the instance to print the values from
 * @param attRange the range of the attributes to list
 * @return a string listing values of the attributes in the range
 */
private static String
  attributeValuesString(Instance instance, Range attRange) {
  StringBuffer text = new StringBuffer();
  if (attRange != null) {
    boolean firstOutput = true;
    attRange.setUpper(instance.numAttributes() - 1);
    for (int i = 0; i < instance.numAttributes(); i++) {
      if (attRange.isInRange(i)) {
        if (firstOutput) {
          text.append("(");
        } else {
          text.append(",");
        }
        text.append(instance.toString(i));
        firstOutput = false;
      }
    }
    if (!firstOutput) {
      text.append(")");
    }
  }
  return text.toString();
}
项目:repo.kmeanspp.silhouette_score    文件:ResultsPanel.java   
/**
 * Swaps the keys for dataset and result.
 */
protected void swapDatasetKeyAndResultKey() {
  int[] tmpSelected;
  Range tmpRange;

  // lists
  tmpSelected = m_DatasetKeyList.getSelectedIndices();
  m_DatasetKeyList.setSelectedIndices(m_ResultKeyList.getSelectedIndices());
  m_ResultKeyList.setSelectedIndices(tmpSelected);

  // tester
  tmpRange = m_TTester.getDatasetKeyColumns();
  m_TTester.setDatasetKeyColumns(m_TTester.getResultsetKeyColumns());
  m_TTester.setResultsetKeyColumns(tmpRange);
  setTTester();
}
项目:autoweka    文件:ClusterEvaluation.java   
/**
  * Builds a string listing the attribute values in a specified range of indices,
  * separated by commas and enclosed in brackets.
  *
  * @param instance the instance to print the values from
  * @param attRange the range of the attributes to list
  * @return a string listing values of the attributes in the range
  */
 private static String attributeValuesString(Instance instance, Range attRange) {
   StringBuffer text = new StringBuffer();
   if (attRange != null) {
     boolean firstOutput = true;
     attRange.setUpper(instance.numAttributes() - 1);
     for (int i=0; i<instance.numAttributes(); i++)
if (attRange.isInRange(i)) {
  if (firstOutput) text.append("(");
  else text.append(",");
  text.append(instance.toString(i));
  firstOutput = false;
}
     if (!firstOutput) text.append(")");
   }
   return text.toString();
 }
项目:autoweka    文件:ResultsPanel.java   
/**
 * Swaps the keys for dataset and result.
 */
protected void swapDatasetKeyAndResultKey() {
  int[]     tmpSelected;
  Range tmpRange;

  // lists
  tmpSelected = m_DatasetKeyList.getSelectedIndices();
  m_DatasetKeyList.setSelectedIndices(m_ResultKeyList.getSelectedIndices());
  m_ResultKeyList.setSelectedIndices(tmpSelected);

  // tester
  tmpRange = m_TTester.getDatasetKeyColumns();
  m_TTester.setDatasetKeyColumns(m_TTester.getResultsetKeyColumns());
  m_TTester.setResultsetKeyColumns(tmpRange);
  setTTester();
}
项目:autoweka    文件:PartitionedMultiFilterTest.java   
/**
 * performs the actual test
 * 
 * @param filters   the filters to use
 * @param ranges    the ranges to use
 * @param remove    whether to remove unused attributes or not
 * @return      the processed dataset
 * @throws Exception    if apllying of filter fails
 */
protected Instances applyFilter(Filter[] filters, Range[] ranges, boolean remove)
  throws Exception {

  PartitionedMultiFilter    filter;
  Instances         result;

  filter = (PartitionedMultiFilter) getFilter();
  filter.setFilters(filters);
  filter.setRanges(ranges);
  filter.setRemoveUnused(remove);
  filter.setInputFormat(m_Instances);

  result = Filter.useFilter(m_Instances, filter);

  return result;
}
项目:autoweka    文件:PartitionedMultiFilterTest.java   
/**
 * tests two filters with disjoint ranges
 */
public void testDisjoint() {
  Instances result = null;
  m_Instances.setClassIndex(2);

  try {
    result = applyFilter(
 new Filter[]{new AllFilter(), new AllFilter()},
 new Range[]{new Range("1-2"),new Range("4-5")},
 false);
  }
  catch (Exception e) {
    fail("Problem applying the filter: " + e);
  }

  assertEquals(m_Instances.numInstances(), result.numInstances());
  assertEquals(m_Instances.numAttributes(), result.numAttributes());
}
项目:autoweka    文件:PartitionedMultiFilterTest.java   
/**
 * tests two filters with disjoint ranges and removing the unused attributes
 */
public void testDisjointRemoveUnused() {
  Instances result = null;
  m_Instances.setClassIndex(2);

  try {
    result = applyFilter(
 new Filter[]{new AllFilter(), new AllFilter()},
 new Range[]{new Range("1-2"),new Range("5")},
 true);
  }
  catch (Exception e) {
    fail("Problem applying the filter: " + e);
  }

  assertEquals(m_Instances.numInstances(), result.numInstances());
  assertEquals(m_Instances.numAttributes() - 1, result.numAttributes());
}
项目:autoweka    文件:PartitionedMultiFilterTest.java   
/**
 * tests two filters with overlapping ranges
 */
public void testOverlapping() {
  Instances result = null;
  m_Instances.setClassIndex(2);

  try {
    result = applyFilter(
 new Filter[]{new AllFilter(), new AllFilter()},
 new Range[]{new Range("1,2,4"),new Range("2,4")},
 false);
  }
  catch (Exception e) {
    fail("Problem applying the filter: " + e);
  }

  assertEquals(m_Instances.numInstances(), result.numInstances());
  assertEquals(m_Instances.numAttributes() + 2, result.numAttributes());
}
项目:autoweka    文件:PartitionedMultiFilterTest.java   
/**
 * tests two filters with overlapping ranges and removing the unused attributes
 */
public void testOverlappingRemoveUnused() {
  Instances result = null;
  m_Instances.setClassIndex(2);

  try {
    result = applyFilter(
 new Filter[]{new AllFilter(), new AllFilter()},
 new Range[]{new Range("1,2,4"),new Range("2,4")},
 true);
  }
  catch (Exception e) {
    fail("Problem applying the filter: " + e);
  }

  assertEquals(m_Instances.numInstances(), result.numInstances());
  assertEquals(m_Instances.numAttributes() + 1, result.numAttributes());
}
项目:umple    文件:ClusterEvaluation.java   
/**
 * Builds a string listing the attribute values in a specified range of
 * indices, separated by commas and enclosed in brackets.
 * 
 * @param instance the instance to print the values from
 * @param attRange the range of the attributes to list
 * @return a string listing values of the attributes in the range
 */
private static String attributeValuesString(Instance instance, Range attRange) {
  StringBuffer text = new StringBuffer();
  if (attRange != null) {
    boolean firstOutput = true;
    attRange.setUpper(instance.numAttributes() - 1);
    for (int i = 0; i < instance.numAttributes(); i++) {
      if (attRange.isInRange(i)) {
        if (firstOutput) {
          text.append("(");
        } else {
          text.append(",");
        }
        text.append(instance.toString(i));
        firstOutput = false;
      }
    }
    if (!firstOutput) {
      text.append(")");
    }
  }
  return text.toString();
}
项目:umple    文件:ResultsPanel.java   
/**
 * Swaps the keys for dataset and result.
 */
protected void swapDatasetKeyAndResultKey() {
  int[] tmpSelected;
  Range tmpRange;

  // lists
  tmpSelected = m_DatasetKeyList.getSelectedIndices();
  m_DatasetKeyList.setSelectedIndices(m_ResultKeyList.getSelectedIndices());
  m_ResultKeyList.setSelectedIndices(tmpSelected);

  // tester
  tmpRange = m_TTester.getDatasetKeyColumns();
  m_TTester.setDatasetKeyColumns(m_TTester.getResultsetKeyColumns());
  m_TTester.setResultsetKeyColumns(tmpRange);
  setTTester();
}
项目:umple    文件:PartitionedMultiFilterTest.java   
/**
 * performs the actual test
 * 
 * @param filters   the filters to use
 * @param ranges    the ranges to use
 * @param remove    whether to remove unused attributes or not
 * @return      the processed dataset
 * @throws Exception    if apllying of filter fails
 */
protected Instances applyFilter(Filter[] filters, Range[] ranges, boolean remove)
  throws Exception {

  PartitionedMultiFilter    filter;
  Instances         result;

  filter = (PartitionedMultiFilter) getFilter();
  filter.setFilters(filters);
  filter.setRanges(ranges);
  filter.setRemoveUnused(remove);
  filter.setInputFormat(m_Instances);

  result = Filter.useFilter(m_Instances, filter);

  return result;
}
项目:umple    文件:PartitionedMultiFilterTest.java   
/**
 * tests two filters with disjoint ranges
 */
public void testDisjoint() {
  Instances result = null;
  m_Instances.setClassIndex(2);

  try {
    result = applyFilter(
 new Filter[]{new AllFilter(), new AllFilter()},
 new Range[]{new Range("1-2"),new Range("4-5")},
 false);
  }
  catch (Exception e) {
    fail("Problem applying the filter: " + e);
  }

  assertEquals(m_Instances.numInstances(), result.numInstances());
  assertEquals(m_Instances.numAttributes(), result.numAttributes());
}
项目:umple    文件:PartitionedMultiFilterTest.java   
/**
 * tests two filters with disjoint ranges and removing the unused attributes
 */
public void testDisjointRemoveUnused() {
  Instances result = null;
  m_Instances.setClassIndex(2);

  try {
    result = applyFilter(
 new Filter[]{new AllFilter(), new AllFilter()},
 new Range[]{new Range("1-2"),new Range("5")},
 true);
  }
  catch (Exception e) {
    fail("Problem applying the filter: " + e);
  }

  assertEquals(m_Instances.numInstances(), result.numInstances());
  assertEquals(m_Instances.numAttributes() - 1, result.numAttributes());
}
项目:umple    文件:PartitionedMultiFilterTest.java   
/**
 * tests two filters with overlapping ranges
 */
public void testOverlapping() {
  Instances result = null;
  m_Instances.setClassIndex(2);

  try {
    result = applyFilter(
 new Filter[]{new AllFilter(), new AllFilter()},
 new Range[]{new Range("1,2,4"),new Range("2,4")},
 false);
  }
  catch (Exception e) {
    fail("Problem applying the filter: " + e);
  }

  assertEquals(m_Instances.numInstances(), result.numInstances());
  assertEquals(m_Instances.numAttributes() + 2, result.numAttributes());
}
项目:umple    文件:PartitionedMultiFilterTest.java   
/**
 * tests two filters with overlapping ranges and removing the unused attributes
 */
public void testOverlappingRemoveUnused() {
  Instances result = null;
  m_Instances.setClassIndex(2);

  try {
    result = applyFilter(
 new Filter[]{new AllFilter(), new AllFilter()},
 new Range[]{new Range("1,2,4"),new Range("2,4")},
 true);
  }
  catch (Exception e) {
    fail("Problem applying the filter: " + e);
  }

  assertEquals(m_Instances.numInstances(), result.numInstances());
  assertEquals(m_Instances.numAttributes() + 1, result.numAttributes());
}
项目:jbossBA    文件:ClusterEvaluation.java   
/**
  * Builds a string listing the attribute values in a specified range of indices,
  * separated by commas and enclosed in brackets.
  *
  * @param instance the instance to print the values from
  * @param attRange the range of the attributes to list
  * @return a string listing values of the attributes in the range
  */
 private static String attributeValuesString(Instance instance, Range attRange) {
   StringBuffer text = new StringBuffer();
   if (attRange != null) {
     boolean firstOutput = true;
     attRange.setUpper(instance.numAttributes() - 1);
     for (int i=0; i<instance.numAttributes(); i++)
if (attRange.isInRange(i)) {
  if (firstOutput) text.append("(");
  else text.append(",");
  text.append(instance.toString(i));
  firstOutput = false;
}
     if (!firstOutput) text.append(")");
   }
   return text.toString();
 }
项目:repo.kmeanspp.silhouette_score    文件:GreedyStepwise.java   
/**
 * Constructor
 */
public GreedyStepwise() {
  m_threshold = -Double.MAX_VALUE;
  m_doneRanking = false;
  m_startRange = new Range();
  m_starting = null;
  resetOptions();
}
项目:repo.kmeanspp.silhouette_score    文件:Ranker.java   
/**
 * Resets stuff to default values
 */
protected void resetOptions() {
  m_starting = null;
  m_startRange = new Range();
  m_attributeList = null;
  m_attributeMerit = null;
  m_threshold = -Double.MAX_VALUE;
}
项目:repo.kmeanspp.silhouette_score    文件:BestFirst.java   
/**
 * Reset options to default values
 */
protected void resetOptions() {
  m_maxStale = 5;
  m_searchDirection = SELECTION_FORWARD;
  m_starting = null;
  m_startRange = new Range();
  m_classIndex = -1;
  m_totalEvals = 0;
  m_cacheSize = 1;
  m_debug = false;
}
项目:repo.kmeanspp.silhouette_score    文件:MultiClassClassifier.java   
/**
 * Prints the classifiers.
 * 
 * @return a string representation of the classifier
 */
public String toString() {

  if (m_Classifiers == null) {
    return "MultiClassClassifier: No model built yet.";
  }
  StringBuffer text = new StringBuffer();
  text.append("MultiClassClassifier\n\n");
  for (int i = 0; i < m_Classifiers.length; i++) {
    text.append("Classifier ").append(i + 1);
    if (m_Classifiers[i] != null) {
      if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) {
 if (m_ClassFilters[i] instanceof RemoveWithValues) {
   Range range = new Range(((RemoveWithValues)m_ClassFilters[i])
            .getNominalIndices());
   range.setUpper(m_ClassAttribute.numValues());
   int[] pair = range.getSelection();
   text.append(", " + (pair[0]+1) + " vs " + (pair[1]+1));
 } else if (m_ClassFilters[i] instanceof MakeIndicator) {
   text.append(", using indicator values: ");
   text.append(((MakeIndicator)m_ClassFilters[i]).getValueRange());
 }
      }
      text.append('\n');
      text.append(m_Classifiers[i].toString() + "\n\n");
    } else {
      text.append(" Skipped (no training examples)\n");
    }
  }

  return text.toString();
}
项目:repo.kmeanspp.silhouette_score    文件:PairedTTester.java   
/**
 * Set the value of ResultsetKeyColumns.
 * 
 * @param newResultsetKeyColumns Value to assign to ResultsetKeyColumns.
 */
@Override
public void setResultsetKeyColumns(Range newResultsetKeyColumns) {

  m_ResultsetKeyColumnsRange = newResultsetKeyColumns;
  m_ResultsetsValid = false;
}
项目:repo.kmeanspp.silhouette_score    文件:PairedTTester.java   
/**
 * Set the value of DatasetKeyColumns.
 * 
 * @param newDatasetKeyColumns Value to assign to DatasetKeyColumns.
 */
@Override
public void setDatasetKeyColumns(Range newDatasetKeyColumns) {

  m_DatasetKeyColumnsRange = newDatasetKeyColumns;
  m_ResultsetsValid = false;
}
项目:repo.kmeanspp.silhouette_score    文件:ResultsPanel.java   
public void setResultKeyFromDialog() {

    ListSelectorDialog jd = new ListSelectorDialog(null, m_ResultKeyList);

    // Open the dialog
    int result = jd.showDialog();

    // If accepted, update the ttester
    if (result == ListSelectorDialog.APPROVE_OPTION) {
      int[] selected = m_ResultKeyList.getSelectedIndices();
      String selectedList = "";
      for (int element : selected) {
        selectedList += "," + (element + 1);
      }
      Range generatorRange = new Range();
      if (selectedList.length() != 0) {
        try {
          generatorRange.setRanges(selectedList);
        } catch (Exception ex) {
          ex.printStackTrace();
          System.err.println(ex.getMessage());
        }
      }
      m_TTester.setResultsetKeyColumns(generatorRange);
      setTTester();
    }
  }
项目:repo.kmeanspp.silhouette_score    文件:ResultsPanel.java   
public void setDatasetKeyFromDialog() {

    ListSelectorDialog jd = new ListSelectorDialog(null, m_DatasetKeyList);

    // Open the dialog
    int result = jd.showDialog();

    // If accepted, update the ttester
    if (result == ListSelectorDialog.APPROVE_OPTION) {
      int[] selected = m_DatasetKeyList.getSelectedIndices();
      String selectedList = "";
      for (int element : selected) {
        selectedList += "," + (element + 1);
      }
      Range generatorRange = new Range();
      if (selectedList.length() != 0) {
        try {
          generatorRange.setRanges(selectedList);
        } catch (Exception ex) {
          ex.printStackTrace();
          System.err.println(ex.getMessage());
        }
      }
      m_TTester.setDatasetKeyColumns(generatorRange);
      setTTester();
    }
  }
项目:repo.kmeanspp.silhouette_score    文件:PartitionedMultiFilter.java   
/**
 * tests the data whether the filter can actually handle it.
 * 
 * @param instanceInfo the data to test
 * @throws Exception if the test fails
 */
@Override
protected void testInputFormat(Instances instanceInfo) throws Exception {
  for (int i = 0; i < getRanges().length; i++) {
    Instances newi = new Instances(instanceInfo, 0);
    if (instanceInfo.size() > 0) {
      newi.add((Instance) instanceInfo.get(0).copy());
    }
    Range range = getRanges()[i];
    range.setUpper(instanceInfo.numAttributes() - 1);
    Instances subset = generateSubset(newi, range);
    getFilters()[i].setInputFormat(subset);
  }
}
项目:repo.kmeanspp.silhouette_score    文件:PartitionedMultiFilter.java   
/**
 * generates a subset of the dataset with only the attributes from the range
 * (class is always added if present).
 * 
 * @param data the data to work on
 * @param range the range of attribute to use
 * @return the generated subset
 * @throws Exception if creation fails
 */
protected Instances generateSubset(Instances data, Range range)
  throws Exception {
  Remove filter;
  StringBuilder atts;
  Instances result;
  int[] indices;
  int i;

  // determine attributes
  indices = range.getSelection();
  atts = new StringBuilder();
  for (i = 0; i < indices.length; i++) {
    if (i > 0) {
      atts.append(",");
    }
    atts.append("" + (indices[i] + 1));
  }
  if ((data.classIndex() > -1) && (!range.isInRange(data.classIndex()))) {
    atts.append("," + (data.classIndex() + 1));
  }

  // setup filter
  filter = new Remove();
  filter.setAttributeIndices(atts.toString());
  filter.setInvertSelection(true);
  filter.setInputFormat(data);

  // generate output
  result = Filter.useFilter(data, filter);

  return result;
}
项目:autoweka    文件:GreedyStepwise.java   
/**
 * Constructor
 */
public GreedyStepwise () {
  m_threshold = -Double.MAX_VALUE;
  m_doneRanking = false;
  m_startRange = new Range();
  m_starting = null;
  resetOptions();
}
项目:autoweka    文件:Ranker.java   
/**
 * Resets stuff to default values
 */
protected void resetOptions () {
  m_starting = null;
  m_startRange = new Range();
  m_attributeList = null;
  m_attributeMerit = null;
  m_threshold = -Double.MAX_VALUE;
}
项目:autoweka    文件:BestFirst.java   
/**
 * Reset options to default values
 */
protected void resetOptions () {
  m_maxStale = 5;
  m_searchDirection = SELECTION_FORWARD;
  m_starting = null;
  m_startRange = new Range();
  m_classIndex = -1;
  m_totalEvals = 0;
  m_cacheSize = 1;
  m_debug = false;
}
项目:autoweka    文件:MultiClassClassifier.java   
/**
 * Prints the classifiers.
 * 
 * @return a string representation of the classifier
 */
public String toString() {

  if (m_Classifiers == null) {
    return "MultiClassClassifier: No model built yet.";
  }
  StringBuffer text = new StringBuffer();
  text.append("MultiClassClassifier\n\n");
  for (int i = 0; i < m_Classifiers.length; i++) {
    text.append("Classifier ").append(i + 1);
    if (m_Classifiers[i] != null) {
      if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) {
 if (m_ClassFilters[i] instanceof RemoveWithValues) {
   Range range = new Range(((RemoveWithValues)m_ClassFilters[i])
            .getNominalIndices());
   range.setUpper(m_ClassAttribute.numValues());
   int[] pair = range.getSelection();
   text.append(", " + (pair[0]+1) + " vs " + (pair[1]+1));
 } else if (m_ClassFilters[i] instanceof MakeIndicator) {
   text.append(", using indicator values: ");
   text.append(((MakeIndicator)m_ClassFilters[i]).getValueRange());
 }
      }
      text.append('\n');
      text.append(m_Classifiers[i].toString() + "\n\n");
    } else {
      text.append(" Skipped (no training examples)\n");
    }
  }

  return text.toString();
}
项目:autoweka    文件:ResultsPanel.java   
public void setResultKeyFromDialog() {

    ListSelectorDialog jd = new ListSelectorDialog(null, m_ResultKeyList);

    // Open the dialog
    int result = jd.showDialog();

    // If accepted, update the ttester
    if (result == ListSelectorDialog.APPROVE_OPTION) {
      int [] selected = m_ResultKeyList.getSelectedIndices();
      String selectedList = "";
      for (int i = 0; i < selected.length; i++) {
    selectedList += "," + (selected[i] + 1);
      }
      Range generatorRange = new Range();
      if (selectedList.length() != 0) {
    try {
      generatorRange.setRanges(selectedList);
    } catch (Exception ex) {
      ex.printStackTrace();
      System.err.println(ex.getMessage());
    }
      }
      m_TTester.setResultsetKeyColumns(generatorRange);
      setTTester();
    }
  }
项目:autoweka    文件:ResultsPanel.java   
public void setDatasetKeyFromDialog() {

    ListSelectorDialog jd = new ListSelectorDialog(null, m_DatasetKeyList);

    // Open the dialog
    int result = jd.showDialog();

    // If accepted, update the ttester
    if (result == ListSelectorDialog.APPROVE_OPTION) {
      int [] selected = m_DatasetKeyList.getSelectedIndices();
      String selectedList = "";
      for (int i = 0; i < selected.length; i++) {
    selectedList += "," + (selected[i] + 1);
      }
      Range generatorRange = new Range();
      if (selectedList.length() != 0) {
    try {
      generatorRange.setRanges(selectedList);
    } catch (Exception ex) {
      ex.printStackTrace();
      System.err.println(ex.getMessage());
    }
      }
      m_TTester.setDatasetKeyColumns(generatorRange);
      setTTester();
    }
  }
项目:autoweka    文件:PartitionedMultiFilter.java   
/**
  * tests the data whether the filter can actually handle it.
  *
  * @param instanceInfo the data to test
  * @throws Exception       if the test fails
  */
 protected void testInputFormat(Instances instanceInfo) throws Exception {
   for (int i = 0; i < getRanges().length; i++) {
     Instances newi = new Instances(instanceInfo, 0);
     if (instanceInfo.size() > 0){
newi.add((Instance)instanceInfo.get(0).copy());
     }
     Range range = getRanges()[i];
     range.setUpper(instanceInfo.numAttributes() - 1);
     Instances subset = generateSubset(newi, range);
     getFilters()[i].setInputFormat(subset);
   }
 }
项目:autoweka    文件:PartitionedMultiFilter.java   
/**
  * generates a subset of the dataset with only the attributes from the range
  * (class is always added if present).
  *
  * @param data the data to work on
  * @param range    the range of attribute to use
  * @return     the generated subset
  * @throws Exception   if creation fails
  */
 protected Instances generateSubset(Instances data, Range range) throws Exception {
   Remove       filter;
   StringBuilder    atts;
   Instances        result;
   int[]        indices;
   int          i;

   // determine attributes
   indices = range.getSelection();
   atts    = new StringBuilder();
   for (i = 0; i < indices.length; i++) {
     if (i > 0)
atts.append(",");
     atts.append("" + (indices[i] + 1));
   }
   if ((data.classIndex() > -1) && (!range.isInRange(data.classIndex())))
     atts.append("," + (data.classIndex() + 1));

   // setup filter
   filter = new Remove();
   filter.setAttributeIndices(atts.toString());
   filter.setInvertSelection(true);
   filter.setInputFormat(data);

   // generate output
   result = Filter.useFilter(data, filter);

   return result;
 }
项目:umple    文件:GreedyStepwise.java   
/**
 * Constructor
 */
public GreedyStepwise() {
  m_threshold = -Double.MAX_VALUE;
  m_doneRanking = false;
  m_startRange = new Range();
  m_starting = null;
  resetOptions();
}
项目:umple    文件:Ranker.java   
/**
 * Resets stuff to default values
 */
protected void resetOptions() {
  m_starting = null;
  m_startRange = new Range();
  m_attributeList = null;
  m_attributeMerit = null;
  m_threshold = -Double.MAX_VALUE;
}
项目:umple    文件:BestFirst.java   
/**
 * Reset options to default values
 */
protected void resetOptions() {
  m_maxStale = 5;
  m_searchDirection = SELECTION_FORWARD;
  m_starting = null;
  m_startRange = new Range();
  m_classIndex = -1;
  m_totalEvals = 0;
  m_cacheSize = 1;
  m_debug = false;
}
项目:umple    文件:MultiClassClassifier.java   
/**
 * Prints the classifiers.
 * 
 * @return a string representation of the classifier
 */
public String toString() {

  if (m_Classifiers == null) {
    return "MultiClassClassifier: No model built yet.";
  }
  StringBuffer text = new StringBuffer();
  text.append("MultiClassClassifier\n\n");
  for (int i = 0; i < m_Classifiers.length; i++) {
    text.append("Classifier ").append(i + 1);
    if (m_Classifiers[i] != null) {
      if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) {
 if (m_ClassFilters[i] instanceof RemoveWithValues) {
   Range range = new Range(((RemoveWithValues)m_ClassFilters[i])
            .getNominalIndices());
   range.setUpper(m_ClassAttribute.numValues());
   int[] pair = range.getSelection();
   text.append(", " + (pair[0]+1) + " vs " + (pair[1]+1));
 } else if (m_ClassFilters[i] instanceof MakeIndicator) {
   text.append(", using indicator values: ");
   text.append(((MakeIndicator)m_ClassFilters[i]).getValueRange());
 }
      }
      text.append('\n');
      text.append(m_Classifiers[i].toString() + "\n\n");
    } else {
      text.append(" Skipped (no training examples)\n");
    }
  }

  return text.toString();
}
项目:umple    文件:PairedTTester.java   
/**
 * Set the value of ResultsetKeyColumns.
 * 
 * @param newResultsetKeyColumns Value to assign to ResultsetKeyColumns.
 */
@Override
public void setResultsetKeyColumns(Range newResultsetKeyColumns) {

  m_ResultsetKeyColumnsRange = newResultsetKeyColumns;
  m_ResultsetsValid = false;
}