Java 类weka.core.TestInstances 实例源码

项目:repo.kmeanspp.silhouette_score    文件:CheckClusterer.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 */
protected Instances makeTestDataset(int seed, int numInstances,
  int numNominal, int numNumeric, int numString, int numDate,
  int numRelational, boolean multiInstance) throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setClassIndex(TestInstances.NO_CLASS);
  dataset.setMultiInstance(multiInstance);

  return dataset.generate();
}
项目:repo.kmeanspp.silhouette_score    文件:CheckAssociator.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param nominalPredictor if true use nominal predictor attributes
 * @param numericPredictor if true use numeric predictor attributes
 * @param stringPredictor if true use string predictor attributes
 * @param datePredictor if true use date predictor attributes
 * @param relationalPredictor if true use relational predictor attributes
 * @param multiInstance whether multi-instance is needed
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(boolean nominalPredictor,
  boolean numericPredictor, boolean stringPredictor, boolean datePredictor,
  boolean relationalPredictor, boolean multiInstance, int classType,
  int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean predictorMissing = false, classMissing = false;

  return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType, classIndex,
    missingLevel, predictorMissing, classMissing, numTrain, numClasses,
    accepts);
}
项目:repo.kmeanspp.silhouette_score    文件:CheckAttributeSelection.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param nominalPredictor if true use nominal predictor attributes
 * @param numericPredictor if true use numeric predictor attributes
 * @param stringPredictor if true use string predictor attributes
 * @param datePredictor if true use date predictor attributes
 * @param relationalPredictor if true use relational predictor attributes
 * @param multiInstance whether multi-instance is needed
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(boolean nominalPredictor,
  boolean numericPredictor, boolean stringPredictor, boolean datePredictor,
  boolean relationalPredictor, boolean multiInstance, int classType,
  int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean predictorMissing = false, classMissing = false;

  return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType, classIndex,
    missingLevel, predictorMissing, classMissing, numTrain, numClasses,
    accepts);
}
项目:repo.kmeanspp.silhouette_score    文件:CheckAttributeSelection.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances,
  int numNominal, int numNumeric, int numString, int numDate,
  int numRelational, int numClasses, int classType, int classIndex,
  boolean multiInstance) throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);
  dataset.setNumClasses(numClasses);
  dataset.setMultiInstance(multiInstance);
  dataset.setWords(getWords());
  dataset.setWordSeparators(getWordSeparators());

  return process(dataset.generate());
}
项目:repo.kmeanspp.silhouette_score    文件:CheckClassifier.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param nominalPredictor if true use nominal predictor attributes
 * @param numericPredictor if true use numeric predictor attributes
 * @param stringPredictor if true use string predictor attributes
 * @param datePredictor if true use date predictor attributes
 * @param relationalPredictor if true use relational predictor attributes
 * @param multiInstance whether multi-instance is needed
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(boolean nominalPredictor,
  boolean numericPredictor, boolean stringPredictor, boolean datePredictor,
  boolean relationalPredictor, boolean multiInstance, int classType,
  int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses =
    2, missingLevel = 0;
  boolean predictorMissing = false, classMissing = false;

  return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType, classIndex,
    missingLevel, predictorMissing, classMissing, numTrain, numTest,
    numClasses, accepts);
}
项目:repo.kmeanspp.silhouette_score    文件:CheckClassifier.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances,
  int numNominal, int numNumeric, int numString, int numDate,
  int numRelational, int numClasses, int classType, int classIndex,
  boolean multiInstance) throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);
  dataset.setNumClasses(numClasses);
  dataset.setMultiInstance(multiInstance);
  dataset.setWords(getWords());
  dataset.setWordSeparators(getWordSeparators());

  return process(dataset.generate());
}
项目:repo.kmeanspp.silhouette_score    文件:CheckKernel.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param nominalPredictor if true use nominal predictor attributes
 * @param numericPredictor if true use numeric predictor attributes
 * @param stringPredictor if true use string predictor attributes
 * @param datePredictor if true use date predictor attributes
 * @param relationalPredictor if true use relational predictor attributes
 * @param multiInstance whether multi-instance is needed
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(boolean nominalPredictor,
  boolean numericPredictor, boolean stringPredictor, boolean datePredictor,
  boolean relationalPredictor, boolean multiInstance, int classType,
  int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean predictorMissing = false, classMissing = false;

  return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType, classIndex,
    missingLevel, predictorMissing, classMissing, numTrain, numClasses,
    accepts);
}
项目:repo.kmeanspp.silhouette_score    文件:CheckKernel.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances,
  int numNominal, int numNumeric, int numString, int numDate,
  int numRelational, int numClasses, int classType, int classIndex,
  boolean multiInstance) throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);
  dataset.setNumClasses(numClasses);
  dataset.setMultiInstance(multiInstance);
  dataset.setWords(getWords());
  dataset.setWordSeparators(getWordSeparators());

  return process(dataset.generate());
}
项目:repo.kmeanspp.silhouette_score    文件:CheckEstimator.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param attrTypes the attribute types the estimator accepts
 * @param numAtts of attributes
 * @param attrIndex the index of the attribute
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(AttrTypes attrTypes,
  int numAtts, int attrIndex, int classType, int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(attrTypes, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean attributeMissing = false, classMissing = false;

  return runBasicTest(attrTypes, numAtts, attrIndex, classType, classIndex,
    missingLevel, attributeMissing, classMissing, numTrain, numTest,
    numClasses, accepts);
}
项目:repo.kmeanspp.silhouette_score    文件:CheckEstimator.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numAttr the number of attributes to generate
 * @param attrTypes the type of attrbute that is excepted
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, int numAttr,
  AttrTypes attrTypes, int numClasses, int classType, int classIndex)
  throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(attrTypes.nominal ? numAttr : 0);
  dataset.setNumNumeric(attrTypes.numeric ? numAttr : 0);
  dataset.setNumString(attrTypes.string ? numAttr : 0);
  dataset.setNumDate(attrTypes.date ? numAttr : 0);
  dataset.setNumRelational(attrTypes.relational ? numAttr : 0);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);

  return process(dataset.generate());
}
项目:autoweka    文件:BaggedLOFTest.java   
/**
 * Generates data for the FilteredClassifier test
 * Overriding the base class method because BaggedLOF needs a larger data set.
 *
 * @throws Exception if generation of data fails
 * @return the dataset for the FilteredClassifier
 */
@Override
protected Instances getFilteredClassifierData() throws Exception {
    TestInstances test;
    Instances result;

    // NB: in order to make sure that the classifier can handle the data,
    //     we're using the classifier's capabilities to generate the data.
    test = TestInstances.forCapabilities(
            m_FilteredClassifier.getClassifier().getCapabilities());
    test.setClassIndex(TestInstances.CLASS_IS_LAST);
    test.setNumInstances(100);

    result = test.generate();

    return result;
}
项目:autoweka    文件:CheckClusterer.java   
/**
 * Make a simple set of instances with variable position of the class 
 * attribute, which can later be modified for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    boolean multiInstance)
throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setClassIndex(TestInstances.NO_CLASS);
  dataset.setMultiInstance(multiInstance);

  return dataset.generate();
}
项目:autoweka    文件:CheckAssociator.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    int numClasses, int classType,
                                    boolean multiInstance)
  throws Exception {

  return makeTestDataset(
seed, 
numInstances,
numNominal,
numNumeric,
numString,
numDate, 
numRelational,
numClasses, 
classType,
TestInstances.CLASS_IS_LAST,
multiInstance);
}
项目:autoweka    文件:CheckAttributeSelection.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    int numClasses, int classType,
                                    boolean multiInstance)
  throws Exception {

  return makeTestDataset(
seed, 
numInstances,
numNominal,
numNumeric,
numString,
numDate, 
numRelational,
numClasses, 
classType,
TestInstances.CLASS_IS_LAST,
multiInstance);
}
项目:autoweka    文件:CheckClassifier.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances,
                                    int numNominal, int numNumeric,
                                    int numString, int numDate,
                                    int numRelational,
                                    int numClasses, int classType,
                                    boolean multiInstance)
  throws Exception {

  return makeTestDataset(
      seed,
      numInstances,
      numNominal,
      numNumeric,
      numString,
      numDate,
      numRelational,
      numClasses,
      classType,
      TestInstances.CLASS_IS_LAST,
      multiInstance);
}
项目:autoweka    文件:CheckKernel.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    int numClasses, int classType,
                                    boolean multiInstance)
  throws Exception {

  return makeTestDataset(
seed, 
numInstances,
numNominal,
numNumeric,
numString,
numDate, 
numRelational,
numClasses, 
classType,
TestInstances.CLASS_IS_LAST,
multiInstance);
}
项目:autoweka    文件:CheckEstimator.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 *
 * @param attrTypes the attribute types the estimator accepts
 * @param numAtts of attributes
 * @param attrIndex the index of the attribute
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test 
 *         was acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(AttrTypes attrTypes,
                   int numAtts,
                   int attrIndex,
                   int classType,
                   int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST)
    print("class attribute as last attribute");
  else
    print("class attribute as " + (classIndex + 1) + ". attribute");
  printAttributeSummary(attrTypes, classType);
  print("...");
  FastVector accepts = new FastVector();
  int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, 
  missingLevel = 0;
  boolean attributeMissing = false, classMissing = false;

  return runBasicTest(attrTypes,
    numAtts, attrIndex,
                      classType, classIndex,
                      missingLevel, attributeMissing, classMissing,
                      numTrain, numTest, numClasses, 
                      accepts);
}
项目:autoweka    文件:CheckEstimator.java   
/**
 * Runs a text on the datasets with the given characteristics.
 * 
 * @param attrTypes attribute types that can be estimated
 * @param numAtts number of attributes
 * @param attrIndex attribute index 
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param missingLevel the percentage of missing values
 * @param attributeMissing true if the missing values may be in 
 * the attributes
 * @param classMissing true if the missing values may be in the class
 * @param numTrain the number of instances in the training set
 * @param numTest the number of instaces in the test set
 * @param numClasses the number of classes
 * @param accepts the acceptable string in an exception
 * @return index 0 is true if the test was passed, index 1 is true if test 
 *         was acceptable
 */
protected boolean[] runBasicTest(AttrTypes attrTypes,
           int numAtts,
           int attrIndex,
           int classType,
           int missingLevel,
           boolean attributeMissing,
           boolean classMissing,
           int numTrain,
           int numTest,
           int numClasses,
           FastVector accepts) {

  return runBasicTest(attrTypes,
    numAtts,
    attrIndex,
    classType, 
    TestInstances.CLASS_IS_LAST,
    missingLevel,
    attributeMissing,
    classMissing,
    numTrain,
    numTest,
    numClasses,
accepts);
}
项目:autoweka    文件:CheckEstimator.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numAttr the number of attributes
 * @param attrTypes the attribute types
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, 
              int numInstances, 
              int numAttr,
              AttrTypes attrTypes,
              int numClasses, 
              int classType)
  throws Exception {

  return makeTestDataset(
       seed,
       numInstances,
       numAttr,
       attrTypes,
       numClasses, 
       classType,
       TestInstances.CLASS_IS_LAST);
}
项目:autoweka    文件:CheckEstimator.java   
/**
 * Make a simple set of instances with variable position of the class 
 * attribute, which can later be modified for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numAttr the number of attributes to generate
 * @param attrTypes the type of attrbute that is excepted
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, 
              int numAttr, AttrTypes attrTypes,
              int numClasses, int classType,
              int classIndex)
  throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal   (attrTypes.nominal     ? numAttr : 0);
  dataset.setNumNumeric   (attrTypes.numeric     ? numAttr : 0);
  dataset.setNumString    (attrTypes.string      ? numAttr : 0);
  dataset.setNumDate      (attrTypes.date        ? numAttr : 0);
  dataset.setNumRelational(attrTypes.relational  ? numAttr : 0);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);

  return process(dataset.generate());
}
项目:autoweka    文件:InputMappedClassifierTest.java   
protected Instances generateData(boolean nomClass, int numClasses, 
    int numNominal, int numNumeric) throws Exception {

  TestInstances generator = new TestInstances();

  if (nomClass) {
    generator.setClassType(Attribute.NOMINAL);
    generator.setNumClasses(numClasses);
  } else {
    generator.setClassType(Attribute.NUMERIC);
  }

  generator.setNumNominal(numNominal);
  generator.setNumNumeric(numNumeric);

  generator.setNumDate(0);
  generator.setNumString(0);
  generator.setNumRelational(0);
  generator.setNumInstances(100);

  generator.setClassIndex(TestInstances.CLASS_IS_LAST);
  Instances data = generator.generate();

  return data;
}
项目:umple    文件:CheckClusterer.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 */
protected Instances makeTestDataset(int seed, int numInstances,
  int numNominal, int numNumeric, int numString, int numDate,
  int numRelational, boolean multiInstance) throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setClassIndex(TestInstances.NO_CLASS);
  dataset.setMultiInstance(multiInstance);

  return dataset.generate();
}
项目:umple    文件:CheckAssociator.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param nominalPredictor if true use nominal predictor attributes
 * @param numericPredictor if true use numeric predictor attributes
 * @param stringPredictor if true use string predictor attributes
 * @param datePredictor if true use date predictor attributes
 * @param relationalPredictor if true use relational predictor attributes
 * @param multiInstance whether multi-instance is needed
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(boolean nominalPredictor,
  boolean numericPredictor, boolean stringPredictor, boolean datePredictor,
  boolean relationalPredictor, boolean multiInstance, int classType,
  int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean predictorMissing = false, classMissing = false;

  return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType, classIndex,
    missingLevel, predictorMissing, classMissing, numTrain, numClasses,
    accepts);
}
项目:umple    文件:CheckAttributeSelection.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param nominalPredictor if true use nominal predictor attributes
 * @param numericPredictor if true use numeric predictor attributes
 * @param stringPredictor if true use string predictor attributes
 * @param datePredictor if true use date predictor attributes
 * @param relationalPredictor if true use relational predictor attributes
 * @param multiInstance whether multi-instance is needed
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(boolean nominalPredictor,
  boolean numericPredictor, boolean stringPredictor, boolean datePredictor,
  boolean relationalPredictor, boolean multiInstance, int classType,
  int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean predictorMissing = false, classMissing = false;

  return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType, classIndex,
    missingLevel, predictorMissing, classMissing, numTrain, numClasses,
    accepts);
}
项目:umple    文件:CheckAttributeSelection.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances,
  int numNominal, int numNumeric, int numString, int numDate,
  int numRelational, int numClasses, int classType, int classIndex,
  boolean multiInstance) throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);
  dataset.setNumClasses(numClasses);
  dataset.setMultiInstance(multiInstance);
  dataset.setWords(getWords());
  dataset.setWordSeparators(getWordSeparators());

  return process(dataset.generate());
}
项目:umple    文件:CheckClassifier.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param nominalPredictor if true use nominal predictor attributes
 * @param numericPredictor if true use numeric predictor attributes
 * @param stringPredictor if true use string predictor attributes
 * @param datePredictor if true use date predictor attributes
 * @param relationalPredictor if true use relational predictor attributes
 * @param multiInstance whether multi-instance is needed
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(boolean nominalPredictor,
  boolean numericPredictor, boolean stringPredictor, boolean datePredictor,
  boolean relationalPredictor, boolean multiInstance, int classType,
  int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean predictorMissing = false, classMissing = false;

  return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType, classIndex,
    missingLevel, predictorMissing, classMissing, numTrain, numTest,
    numClasses, accepts);
}
项目:umple    文件:CheckClassifier.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances,
  int numNominal, int numNumeric, int numString, int numDate,
  int numRelational, int numClasses, int classType, int classIndex,
  boolean multiInstance) throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);
  dataset.setNumClasses(numClasses);
  dataset.setMultiInstance(multiInstance);
  dataset.setWords(getWords());
  dataset.setWordSeparators(getWordSeparators());

  return process(dataset.generate());
}
项目:umple    文件:CheckKernel.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param nominalPredictor if true use nominal predictor attributes
 * @param numericPredictor if true use numeric predictor attributes
 * @param stringPredictor if true use string predictor attributes
 * @param datePredictor if true use date predictor attributes
 * @param relationalPredictor if true use relational predictor attributes
 * @param multiInstance whether multi-instance is needed
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(boolean nominalPredictor,
  boolean numericPredictor, boolean stringPredictor, boolean datePredictor,
  boolean relationalPredictor, boolean multiInstance, int classType,
  int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean predictorMissing = false, classMissing = false;

  return runBasicTest(nominalPredictor, numericPredictor, stringPredictor,
    datePredictor, relationalPredictor, multiInstance, classType, classIndex,
    missingLevel, predictorMissing, classMissing, numTrain, numClasses,
    accepts);
}
项目:umple    文件:CheckKernel.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances,
  int numNominal, int numNumeric, int numString, int numDate,
  int numRelational, int numClasses, int classType, int classIndex,
  boolean multiInstance) throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);
  dataset.setNumClasses(numClasses);
  dataset.setMultiInstance(multiInstance);
  dataset.setWords(getWords());
  dataset.setWordSeparators(getWordSeparators());

  return process(dataset.generate());
}
项目:umple    文件:CheckEstimator.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 * 
 * @param attrTypes the attribute types the estimator accepts
 * @param numAtts of attributes
 * @param attrIndex the index of the attribute
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last
 *          attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test was
 *         acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(AttrTypes attrTypes,
  int numAtts, int attrIndex, int classType, int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST) {
    print("class attribute as last attribute");
  } else {
    print("class attribute as " + (classIndex + 1) + ". attribute");
  }
  printAttributeSummary(attrTypes, classType);
  print("...");
  ArrayList<String> accepts = new ArrayList<String>();
  int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0;
  boolean attributeMissing = false, classMissing = false;

  return runBasicTest(attrTypes, numAtts, attrIndex, classType, classIndex,
    missingLevel, attributeMissing, classMissing, numTrain, numTest,
    numClasses, accepts);
}
项目:umple    文件:CheckEstimator.java   
/**
 * Make a simple set of instances with variable position of the class
 * attribute, which can later be modified for use in specific tests.
 * 
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numAttr the number of attributes to generate
 * @param attrTypes the type of attrbute that is excepted
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, NOMINAL, etc.)
 * @param classIndex the index of the class (0-based, -1 as last)
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, int numAttr,
  AttrTypes attrTypes, int numClasses, int classType, int classIndex)
  throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(attrTypes.nominal ? numAttr : 0);
  dataset.setNumNumeric(attrTypes.numeric ? numAttr : 0);
  dataset.setNumString(attrTypes.string ? numAttr : 0);
  dataset.setNumDate(attrTypes.date ? numAttr : 0);
  dataset.setNumRelational(attrTypes.relational ? numAttr : 0);
  dataset.setNumClasses(numClasses);
  dataset.setClassType(classType);
  dataset.setClassIndex(classIndex);

  return process(dataset.generate());
}
项目:umple    文件:InputMappedClassifierTest.java   
protected Instances generateData(boolean nomClass, int numClasses, 
    int numNominal, int numNumeric) throws Exception {

  TestInstances generator = new TestInstances();

  if (nomClass) {
    generator.setClassType(Attribute.NOMINAL);
    generator.setNumClasses(numClasses);
  } else {
    generator.setClassType(Attribute.NUMERIC);
  }

  generator.setNumNominal(numNominal);
  generator.setNumNumeric(numNumeric);

  generator.setNumDate(0);
  generator.setNumString(0);
  generator.setNumRelational(0);
  generator.setNumInstances(100);

  generator.setClassIndex(TestInstances.CLASS_IS_LAST);
  Instances data = generator.generate();

  return data;
}
项目:jbossBA    文件:CheckClusterer.java   
/**
 * Make a simple set of instances with variable position of the class 
 * attribute, which can later be modified for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see TestInstances#CLASS_IS_LAST
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    boolean multiInstance)
throws Exception {

  TestInstances dataset = new TestInstances();

  dataset.setSeed(seed);
  dataset.setNumInstances(numInstances);
  dataset.setNumNominal(numNominal);
  dataset.setNumNumeric(numNumeric);
  dataset.setNumString(numString);
  dataset.setNumDate(numDate);
  dataset.setNumRelational(numRelational);
  dataset.setClassIndex(TestInstances.NO_CLASS);
  dataset.setMultiInstance(multiInstance);

  return dataset.generate();
}
项目:jbossBA    文件:CheckAssociator.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, CATEGORICAL, etc.)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    int numClasses, int classType,
                                    boolean multiInstance)
  throws Exception {

  return makeTestDataset(
seed, 
numInstances,
numNominal,
numNumeric,
numString,
numDate, 
numRelational,
numClasses, 
classType,
TestInstances.CLASS_IS_LAST,
multiInstance);
}
项目:jbossBA    文件:CheckAttributeSelection.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, CATEGORICAL, etc.)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    int numClasses, int classType,
                                    boolean multiInstance)
  throws Exception {

  return makeTestDataset(
seed, 
numInstances,
numNominal,
numNumeric,
numString,
numDate, 
numRelational,
numClasses, 
classType,
TestInstances.CLASS_IS_LAST,
multiInstance);
}
项目:jbossBA    文件:CheckClassifier.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, CATEGORICAL, etc.)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    int numClasses, int classType,
                                    boolean multiInstance)
  throws Exception {

  return makeTestDataset(
seed, 
numInstances,
numNominal,
numNumeric,
numString,
numDate, 
numRelational,
numClasses, 
classType,
TestInstances.CLASS_IS_LAST,
multiInstance);
}
项目:jbossBA    文件:CheckKernel.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numNominal the number of nominal attributes
 * @param numNumeric the number of numeric attributes
 * @param numString the number of string attributes
 * @param numDate the number of date attributes
 * @param numRelational the number of relational attributes
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, CATEGORICAL, etc.)
 * @param multiInstance whether the dataset should a multi-instance dataset
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, int numInstances, 
                                    int numNominal, int numNumeric, 
                                    int numString, int numDate,
                                    int numRelational,
                                    int numClasses, int classType,
                                    boolean multiInstance)
  throws Exception {

  return makeTestDataset(
seed, 
numInstances,
numNominal,
numNumeric,
numString,
numDate, 
numRelational,
numClasses, 
classType,
TestInstances.CLASS_IS_LAST,
multiInstance);
}
项目:jbossBA    文件:CheckEstimator.java   
/**
 * Checks whether the scheme can handle class attributes as Nth attribute.
 *
 * @param attrTypes the attribute types the estimator accepts
 * @param numAtts of attributes
 * @param attrIndex the index of the attribute
 * @param classType the class type (NUMERIC, CATEGORICAL, etc.)
 * @param classIndex the index of the class attribute (0-based, -1 means last attribute)
 * @return index 0 is true if the test was passed, index 1 is true if test 
 *         was acceptable
 * @see TestInstances#CLASS_IS_LAST
 */
protected boolean[] canHandleClassAsNthAttribute(AttrTypes attrTypes,
                   int numAtts,
                   int attrIndex,
                   int classType,
                   int classIndex) {

  if (classIndex == TestInstances.CLASS_IS_LAST)
    print("class attribute as last attribute");
  else
    print("class attribute as " + (classIndex + 1) + ". attribute");
  printAttributeSummary(attrTypes, classType);
  print("...");
  FastVector accepts = new FastVector();
  int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, 
  missingLevel = 0;
  boolean attributeMissing = false, classMissing = false;

  return runBasicTest(attrTypes,
    numAtts, attrIndex,
                      classType, classIndex,
                      missingLevel, attributeMissing, classMissing,
                      numTrain, numTest, numClasses, 
                      accepts);
}
项目:jbossBA    文件:CheckEstimator.java   
/**
 * Runs a text on the datasets with the given characteristics.
 * 
 * @param attrTypes attribute types that can be estimated
 * @param numAtts number of attributes
 * @param attrIndex attribute index 
 * @param classType the class type (NUMERIC, CATEGORICAL, etc.)
 * @param missingLevel the percentage of missing values
 * @param attributeMissing true if the missing values may be in 
 * the attributes
 * @param classMissing true if the missing values may be in the class
 * @param numTrain the number of instances in the training set
 * @param numTest the number of instaces in the test set
 * @param numClasses the number of classes
 * @param accepts the acceptable string in an exception
 * @return index 0 is true if the test was passed, index 1 is true if test 
 *         was acceptable
 */
protected boolean[] runBasicTest(AttrTypes attrTypes,
           int numAtts,
           int attrIndex,
           int classType,
           int missingLevel,
           boolean attributeMissing,
           boolean classMissing,
           int numTrain,
           int numTest,
           int numClasses,
           FastVector accepts) {

  return runBasicTest(attrTypes,
    numAtts,
    attrIndex,
    classType, 
    TestInstances.CLASS_IS_LAST,
    missingLevel,
    attributeMissing,
    classMissing,
    numTrain,
    numTest,
    numClasses,
accepts);
}
项目:jbossBA    文件:CheckEstimator.java   
/**
 * Make a simple set of instances, which can later be modified
 * for use in specific tests.
 *
 * @param seed the random number seed
 * @param numInstances the number of instances to generate
 * @param numAttr the number of attributes
 * @param attrTypes the attribute types
 * @param numClasses the number of classes (if nominal class)
 * @param classType the class type (NUMERIC, CATEGORICAL, etc.)
 * @return the test dataset
 * @throws Exception if the dataset couldn't be generated
 * @see #process(Instances)
 */
protected Instances makeTestDataset(int seed, 
              int numInstances, 
              int numAttr,
              AttrTypes attrTypes,
              int numClasses, 
              int classType)
  throws Exception {

  return makeTestDataset(
       seed,
       numInstances,
       numAttr,
       attrTypes,
       numClasses, 
       classType,
       TestInstances.CLASS_IS_LAST);
}