Java 类weka.core.OptionMetadata 实例源码

项目:wekaDeeplearning4j    文件:EarlyStopping.java   
@OptionMetadata(
  displayName = "max epochs with no improvement",
  description =
      "Terminate after N epochs in which the model has shown no improvement (default = 0).",
  commandLineParamName = "maxEpochsNoImprovement",
  commandLineParamSynopsis = "-maxEpochsNoImprovement <int>",
  displayOrder = 0
)
public void setMaxEpochsNoImprovement(int maxEpochsNoIMprovement) {
  if (maxEpochsNoIMprovement < 0) {
    throw new RuntimeException(
        "Early stopping criterion must be at "
            + "least zero or above. Negative values are not allowed.");
  }
  this.maxEpochsNoImprovement = maxEpochsNoIMprovement;
}
项目:wekaDeeplearning4j    文件:ConvolutionLayer.java   
@OptionMetadata(
  displayName = "layer name",
  description = "The name of the layer (default = Convolutional Layer).",
  commandLineParamName = "name",
  commandLineParamSynopsis = "-name <string>",
  displayOrder = 0
)
public String getLayerName() {
  return this.layerName;
}
项目:wekaDeeplearning4j    文件:NeuralNetConfiguration.java   
@OptionMetadata(
  displayName = "distribution",
  description = "The distribution (default = NormalDistribution(1e-3, 1)).",
  commandLineParamName = "dist",
  commandLineParamSynopsis = "-dist <specification>",
  displayOrder = 19
)
public Distribution getDist() {
  return dist;
}
项目:wekaDeeplearning4j    文件:GravesLSTM.java   
@OptionMetadata(
  displayName = "layer name",
  description = "The name of the layer (default = Hidden Layer).",
  commandLineParamName = "name",
  commandLineParamSynopsis = "-name <string>",
  displayOrder = 0
)
public String getLayerName() {
  return this.layerName;
}
项目:wekaDeeplearning4j    文件:Nadam.java   
@OptionMetadata(
  displayName = "epsilon",
  description = "The epsilon parameter (default = " + DEFAULT_NADAM_EPSILON + ").",
  commandLineParamName = "epsilon",
  commandLineParamSynopsis = "-epsilon <double>",
  displayOrder = 3
)
@Override
public double getEpsilon() {
  return super.getEpsilon();
}
项目:wekaDeeplearning4j    文件:BatchNormalization.java   
@OptionMetadata(
  displayName = "beta parameter",
  description = "The beta parameter (default = 0).",
  commandLineParamName = "beta",
  commandLineParamSynopsis = "-beta <double>",
  displayOrder = 4
)
public double getBeta() {
  return this.beta;
}
项目:wekaDeeplearning4j    文件:ConvolutionLayer.java   
@OptionMetadata(
  displayName = "number of rows in stride",
  description = "The number of rows in the stride (default = 1).",
  commandLineParamName = "strideX",
  commandLineParamSynopsis = "-strideX <int>",
  displayOrder = 6
)
public int getStrideX() {
  return this.stride[0];
}
项目:wekaDeeplearning4j    文件:StemmingPreprocessor.java   
@OptionMetadata(
  displayName = "stemmer",
  description = "The Weka stemmer to use.",
  commandLineParamName = "stemmer",
  commandLineParamSynopsis = "-stemmer <String>",
  displayOrder = 0
)
public Stemmer getStemmer() {
  return stemmer;
}
项目:wekaDeeplearning4j    文件:ConvolutionLayer.java   
@OptionMetadata(
  displayName = "number of columns in kernel",
  description = "The number of columns in the kernel (default = 5).",
  commandLineParamName = "kernelSizeY",
  commandLineParamSynopsis = "-kernelSizeY <int>",
  displayOrder = 5
)
public int getKernelSizeY() {
  return this.kernelSize[1];
}
项目:wekaDeeplearning4j    文件:ImageInstanceIterator.java   
@OptionMetadata(
  displayName = "desired height",
  description = "The desired height of the images (default = 28).",
  commandLineParamName = "height",
  commandLineParamSynopsis = "-height <int>",
  displayOrder = 3
)
public int getHeight() {
  return height;
}
项目:wekaDeeplearning4j    文件:RmsProp.java   
@OptionMetadata(
  displayName = "epsilon",
  description = "The epsilon parameter (default = " + DEFAULT_RMSPROP_EPSILON + ").",
  commandLineParamName = "epsilon",
  commandLineParamSynopsis = "-epsilon <double>",
  displayOrder = 2
)
@Override
public double getEpsilon() {
  return super.getEpsilon();
}
项目:wekaDeeplearning4j    文件:SubsamplingLayer.java   
@OptionMetadata(
  displayName = "dropout parameter",
  description = "The dropout parameter (default = 0).",
  commandLineParamName = "dropout",
  commandLineParamSynopsis = "-dropout <double>",
  displayOrder = 11
)
public double getDropOut() {
  return this.dropOut;
}
项目:wekaDeeplearning4j    文件:Nadam.java   
@OptionMetadata(
  displayName = "beta1MeanDecay",
  description = "The mean decay (default = " + DEFAULT_NADAM_BETA1_MEAN_DECAY + ").",
  commandLineParamName = "beta1MeanDecay",
  commandLineParamSynopsis = "-beta1MeanDecay <double>",
  displayOrder = 1
)
@Override
public double getBeta1() {
  return super.getBeta1();
}
项目:AffectiveTweets    文件:TweetToLexiconFeatureVector.java   
@OptionMetadata(displayName = "useBingLiu",
        description = "Counts the number of positive and negative words from the Bing Liu lexicon.\n"
                + "More info at: https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon \n"
                + "Publication: Minqing Hu and Bing Liu, Mining and summarizing customer reviews.",
                commandLineParamIsFlag = true, 
                commandLineParamName = "D", 
                commandLineParamSynopsis = "-D",
                displayOrder = 7)           
public boolean isUseBingLiu() {
    return useBingLiu;
}
项目:wekaDeeplearning4j    文件:GravesLSTM.java   
@OptionMetadata(
    displayName = "gate activation function",
    description = "The activation function to use for the gates (default = ActivationSigmoid).",
    commandLineParamName = "gateActivation",
    commandLineParamSynopsis = "-gateActivation <specification>",
    displayOrder = 2
)
@Override
public IActivation getGateActivationFn() {
  return super.getGateActivationFn();
}
项目:AffectiveTweets    文件:TweetToLexiconFeatureVector.java   
@OptionMetadata(displayName = "useS140",
        description = "Calculates a positive and negative score by aggregating the word associations provided by the S140 lexicon.\n"
                + "More info at: http://saifmohammad.com/WebPages/lexicons.html \n"
                + "Publication: Svetlana Kiritchenko, Xiaodan Zhu and Saif Mohammad, Sentiment Analysis of Short Informal Texts.",
                commandLineParamIsFlag = true, 
                commandLineParamName = "H", 
                commandLineParamSynopsis = "-H",
                displayOrder = 9)           
public boolean isUseS140() {
    return useS140;
}
项目:wekaDeeplearning4j    文件:NeuralNetConfiguration.java   
@OptionMetadata(
  displayName = "weight initialization method",
  description = "The method for weight initialization (default = XAVIER).",
  commandLineParamName = "weightInit",
  commandLineParamSynopsis = "-weightInit <specification>",
  displayOrder = 18
)
public WeightInit getWeightInit() {
  return weightInit;
}
项目:wekaDeeplearning4j    文件:NeuralNetConfiguration.java   
@OptionMetadata(
  displayName = "whether to minimize objective",
  description = "Whether to minimize objective.",
  commandLineParamIsFlag = true,
  commandLineParamName = "minimize",
  commandLineParamSynopsis = "-minimize",
  displayOrder = 7
)
public boolean isMinimize() {
  return minimize;
}
项目:wekaDeeplearning4j    文件:ImageInstanceIterator.java   
@OptionMetadata(
  displayName = "desired width",
  description = "The desired width of the images (default = 28).",
  commandLineParamName = "width",
  commandLineParamSynopsis = "-width <int>",
  displayOrder = 2
)
public int getWidth() {
  return width;
}
项目:AffectiveTweets    文件:TweetToLexiconFeatureVector.java   
@OptionMetadata(displayName = "useNrcHashEmo",
        description = "Adds the emotion associations of the words matching the NRC Hashtag Emotion Association Lexicon.\n"
                + "More info at: http://saifmohammad.com/WebPages/lexicons.html\n"
                + "Publication: Saif M. Mohammad, Svetlana Kiritchenko, Using Hashtags to Capture Fine Emotion Categories from Tweets.",
                commandLineParamIsFlag = true, 
                commandLineParamName = "P", 
                commandLineParamSynopsis = "-P",
                displayOrder = 13)          
public boolean isUseNrcHashEmo() {
    return useNrcHashEmo;
}
项目:wekaDeeplearning4j    文件:Dl4jStringToWord2Vec.java   
@OptionMetadata(
  displayName = "learningRate",
  description = "The learning rate (default = 0.025).",
  commandLineParamName = "learningRate",
  commandLineParamSynopsis = "-learningRate <double>",
  displayOrder = 16
)
public double getLearningRate() {
  return learningRate;
}
项目:wekaDeeplearning4j    文件:NeuralNetConfiguration.java   
@OptionMetadata(
  displayName = "learning rate policy",
  description = "The learning rate policy (default = None).",
  commandLineParamName = "learningRatePolicy",
  commandLineParamSynopsis = "-learningRatePolicy <string>",
  displayOrder = 2
)
public LearningRatePolicy getLearningRatePolicy() {
  return learningRatePolicy;
}
项目:AffectiveTweets    文件:TweetToLexiconFeatureVector.java   
@OptionMetadata(displayName = "useNegation",
        description = "Counts the number of negating words in the tweet.",
        commandLineParamIsFlag = true, 
        commandLineParamName = "T", 
        commandLineParamSynopsis = "-T",
        displayOrder = 16)          
public boolean isUseNegation() {
    return useNegation;
}
项目:wekaDeeplearning4j    文件:NeuralNetConfiguration.java   
@OptionMetadata(
  displayName = "gradient normalization threshold",
  description = "The gradient normalization threshold (default = 1).",
  commandLineParamName = "gradNormThreshold",
  commandLineParamSynopsis = "-gradNormThreshold <double>",
  displayOrder = 23
)
public double getGradientNormalizationThreshold() {
  return this.gradientNormalizationThreshold;
}
项目:AffectiveTweets    文件:LabelWordVectors.java   
@OptionMetadata(displayName = "wordIndex",
        description = "The word index (starting from 1) of the target string attribute. Start and last are valid values."
                + "\t(default last).",
        commandLineParamName = "I", commandLineParamSynopsis = "-I <col>",
        displayOrder = 0)   
public String getWordIndex() {
    return m_WordIndex.getSingleIndex();
}
项目:wekaDeeplearning4j    文件:DenseLayer.java   
@OptionMetadata(
  displayName = "dropout parameter",
  description = "The dropout parameter (default = 0).",
  commandLineParamName = "dropout",
  commandLineParamSynopsis = "-dropout <double>",
  displayOrder = 15
)
public double getDropOut() {
  return this.dropOut;
}
项目:AffectiveTweets    文件:LabelWordVectors.java   
@OptionMetadata(displayName = "ArffLexiconWordLabeller",
        description = "The specification of a lexicon evaluator. This option can be used multiple times.",
        commandLineParamName = "lexicon_evaluator",
        commandLineParamSynopsis = "-lexicon_labeller <string>", displayOrder = 3)      
public ArffLexiconWordLabeller[] getLexiconLabs() {
    return lexiconLabs;
}
项目:AffectiveTweets    文件:ASA.java   
@OptionMetadata(displayName = "minAttDocs",
        description = "Minimum frequency of a sparse attribute to be considered in the attribute space.", 
        commandLineParamName = "M", 
        commandLineParamSynopsis = "-M <int>",
        displayOrder = 6)   
public int getMinAttDocs() {
    return minAttDocs;
}
项目:AffectiveTweets    文件:ASA.java   
@OptionMetadata(displayName = "createWordAtts",
        description = "True for creating unigram attributes.", 
        commandLineParamIsFlag = true, commandLineParamName = "W", 
        commandLineParamSynopsis = "-W",
        displayOrder = 7)   
public boolean isCreateWordAtts() {
    return createWordAtts;
}
项目:AffectiveTweets    文件:ASA.java   
@OptionMetadata(displayName = "createClustAtts",
        description = "True for creating attributes using word clusters",
        commandLineParamIsFlag = true, commandLineParamName = "C", 
        commandLineParamSynopsis = "-C",
        displayOrder = 8)   
public void setCreateClustAtts(boolean createClustAtts) {
    this.createClustAtts = createClustAtts;
}
项目:wekaDeeplearning4j    文件:AbstractTextEmbeddingIterator.java   
@OptionMetadata(
  displayName = "truncation length",
  description = "The maximum number of tokens per document (default = 100).",
  commandLineParamName = "truncationLength",
  commandLineParamSynopsis = "-truncationLength <int>",
  displayOrder = 2
)
public int getTruncateLength() {
  return truncateLength;
}
项目:wekaDeeplearning4j    文件:RnnOutputLayer.java   
@OptionMetadata(
  displayName = "loss function",
  description = "The loss function to use (default = LossMCXENT).",
  commandLineParamName = "lossFn",
  commandLineParamSynopsis = "-lossFn <specification>",
  displayOrder = 1
)
public ILossFunction getLossFn() {
  return this.lossFn;
}
项目:AffectiveTweets    文件:ASA.java   
@OptionMetadata(displayName = "tweetsPerCentroid",
        description = "The number of tweets to average in each generated instance. \t default: 10", 
        commandLineParamName = "A", 
        commandLineParamSynopsis = "-A <int>",
        displayOrder = 11)
public int getTweetsPerCentroid() {
    return tweetsPerCentroid;
}
项目:repo.kmeanspp.silhouette_score    文件:DatabaseSaver.java   
/**
 * Returns the custom properties file in use, if any.
 *
 * @return the custom props file, null if none used
 */
@OptionMetadata(
  displayName = "DB config file",
  description = "The custom properties that the user can use to override the default ones.",
  displayOrder = 8)
@FilePropertyMetadata(fileChooserDialogType = JFileChooser.OPEN_DIALOG,
  directoriesOnly = false)
public
  File getCustomPropsFile() {
  return m_CustomPropsFile;
}
项目:AffectiveTweets    文件:ASA.java   
@OptionMetadata(displayName = "numNegInstances",
        description = "The number of negative instances to generate. \t default: 1000", 
        commandLineParamName = "nneg", 
        commandLineParamSynopsis = "-nneg <int>",
        displayOrder = 13)
public int getNumNegInstances() {
    return numNegInstances;
}
项目:wekaDeeplearning4j    文件:OutputLayer.java   
@OptionMetadata(
  displayName = "loss function",
  description = "The loss function to use (default = LossMCXENT).",
  commandLineParamName = "lossFn",
  commandLineParamSynopsis = "-lossFn <specification>",
  displayOrder = 1
)
public ILossFunction getLossFn() {
  return this.lossFn;
}
项目:wekaDeeplearning4j    文件:SubsamplingLayer.java   
@OptionMetadata(
  displayName = "eps",
  description = "The value of the eps parameter (default = 1e-8).",
  commandLineParamName = "eps",
  commandLineParamSynopsis = "-eps <double>",
  displayOrder = 2
)
public double getEps() {
  return super.getEps();
}
项目:wekaDeeplearning4j    文件:AbstractTextEmbeddingIterator.java   
@OptionMetadata(
  displayName = "token pre processor",
  description = "The token pre processor.",
  commandLineParamName = "tokenPreProcessor",
  commandLineParamSynopsis = "-tokenPreProcessor <string>",
  displayOrder = 4
)
public TokenPreProcess getTokenPreProcess() {
  return tokenPreProcess;
}
项目:wekaDeeplearning4j    文件:Dl4jMlpClassifier.java   
/**
 * Set the log file
 *
 * @param logFile the log file
 */
@OptionMetadata(
  displayName = "log file",
  description =
      "The name of the log file to write loss information to "
          + "(default = $WEKA_HOME/network.log).",
  commandLineParamName = "logFile",
  commandLineParamSynopsis = "-logFile <string>",
  displayOrder = 1
)
public void setLogFile(File logFile) {
  this.logFile = logFile;
}
项目:wekaDeeplearning4j    文件:NeuralNetConfiguration.java   
@OptionMetadata(
  displayName = "learningrate",
  description = "The learningrate to use (default = 0.1).",
  commandLineParamName = "learningRate",
  commandLineParamSynopsis = "-learningRate <double>",
  displayOrder = 13
)
public double getLearningRate() {
  return learningRate;
}