@OptionMetadata( displayName = "max epochs with no improvement", description = "Terminate after N epochs in which the model has shown no improvement (default = 0).", commandLineParamName = "maxEpochsNoImprovement", commandLineParamSynopsis = "-maxEpochsNoImprovement <int>", displayOrder = 0 ) public void setMaxEpochsNoImprovement(int maxEpochsNoIMprovement) { if (maxEpochsNoIMprovement < 0) { throw new RuntimeException( "Early stopping criterion must be at " + "least zero or above. Negative values are not allowed."); } this.maxEpochsNoImprovement = maxEpochsNoIMprovement; }
@OptionMetadata( displayName = "layer name", description = "The name of the layer (default = Convolutional Layer).", commandLineParamName = "name", commandLineParamSynopsis = "-name <string>", displayOrder = 0 ) public String getLayerName() { return this.layerName; }
@OptionMetadata( displayName = "distribution", description = "The distribution (default = NormalDistribution(1e-3, 1)).", commandLineParamName = "dist", commandLineParamSynopsis = "-dist <specification>", displayOrder = 19 ) public Distribution getDist() { return dist; }
@OptionMetadata( displayName = "layer name", description = "The name of the layer (default = Hidden Layer).", commandLineParamName = "name", commandLineParamSynopsis = "-name <string>", displayOrder = 0 ) public String getLayerName() { return this.layerName; }
@OptionMetadata( displayName = "epsilon", description = "The epsilon parameter (default = " + DEFAULT_NADAM_EPSILON + ").", commandLineParamName = "epsilon", commandLineParamSynopsis = "-epsilon <double>", displayOrder = 3 ) @Override public double getEpsilon() { return super.getEpsilon(); }
@OptionMetadata( displayName = "beta parameter", description = "The beta parameter (default = 0).", commandLineParamName = "beta", commandLineParamSynopsis = "-beta <double>", displayOrder = 4 ) public double getBeta() { return this.beta; }
@OptionMetadata( displayName = "number of rows in stride", description = "The number of rows in the stride (default = 1).", commandLineParamName = "strideX", commandLineParamSynopsis = "-strideX <int>", displayOrder = 6 ) public int getStrideX() { return this.stride[0]; }
@OptionMetadata( displayName = "stemmer", description = "The Weka stemmer to use.", commandLineParamName = "stemmer", commandLineParamSynopsis = "-stemmer <String>", displayOrder = 0 ) public Stemmer getStemmer() { return stemmer; }
@OptionMetadata( displayName = "number of columns in kernel", description = "The number of columns in the kernel (default = 5).", commandLineParamName = "kernelSizeY", commandLineParamSynopsis = "-kernelSizeY <int>", displayOrder = 5 ) public int getKernelSizeY() { return this.kernelSize[1]; }
@OptionMetadata( displayName = "desired height", description = "The desired height of the images (default = 28).", commandLineParamName = "height", commandLineParamSynopsis = "-height <int>", displayOrder = 3 ) public int getHeight() { return height; }
@OptionMetadata( displayName = "epsilon", description = "The epsilon parameter (default = " + DEFAULT_RMSPROP_EPSILON + ").", commandLineParamName = "epsilon", commandLineParamSynopsis = "-epsilon <double>", displayOrder = 2 ) @Override public double getEpsilon() { return super.getEpsilon(); }
@OptionMetadata( displayName = "dropout parameter", description = "The dropout parameter (default = 0).", commandLineParamName = "dropout", commandLineParamSynopsis = "-dropout <double>", displayOrder = 11 ) public double getDropOut() { return this.dropOut; }
@OptionMetadata( displayName = "beta1MeanDecay", description = "The mean decay (default = " + DEFAULT_NADAM_BETA1_MEAN_DECAY + ").", commandLineParamName = "beta1MeanDecay", commandLineParamSynopsis = "-beta1MeanDecay <double>", displayOrder = 1 ) @Override public double getBeta1() { return super.getBeta1(); }
@OptionMetadata(displayName = "useBingLiu", description = "Counts the number of positive and negative words from the Bing Liu lexicon.\n" + "More info at: https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon \n" + "Publication: Minqing Hu and Bing Liu, Mining and summarizing customer reviews.", commandLineParamIsFlag = true, commandLineParamName = "D", commandLineParamSynopsis = "-D", displayOrder = 7) public boolean isUseBingLiu() { return useBingLiu; }
@OptionMetadata( displayName = "gate activation function", description = "The activation function to use for the gates (default = ActivationSigmoid).", commandLineParamName = "gateActivation", commandLineParamSynopsis = "-gateActivation <specification>", displayOrder = 2 ) @Override public IActivation getGateActivationFn() { return super.getGateActivationFn(); }
@OptionMetadata(displayName = "useS140", description = "Calculates a positive and negative score by aggregating the word associations provided by the S140 lexicon.\n" + "More info at: http://saifmohammad.com/WebPages/lexicons.html \n" + "Publication: Svetlana Kiritchenko, Xiaodan Zhu and Saif Mohammad, Sentiment Analysis of Short Informal Texts.", commandLineParamIsFlag = true, commandLineParamName = "H", commandLineParamSynopsis = "-H", displayOrder = 9) public boolean isUseS140() { return useS140; }
@OptionMetadata( displayName = "weight initialization method", description = "The method for weight initialization (default = XAVIER).", commandLineParamName = "weightInit", commandLineParamSynopsis = "-weightInit <specification>", displayOrder = 18 ) public WeightInit getWeightInit() { return weightInit; }
@OptionMetadata( displayName = "whether to minimize objective", description = "Whether to minimize objective.", commandLineParamIsFlag = true, commandLineParamName = "minimize", commandLineParamSynopsis = "-minimize", displayOrder = 7 ) public boolean isMinimize() { return minimize; }
@OptionMetadata( displayName = "desired width", description = "The desired width of the images (default = 28).", commandLineParamName = "width", commandLineParamSynopsis = "-width <int>", displayOrder = 2 ) public int getWidth() { return width; }
@OptionMetadata(displayName = "useNrcHashEmo", description = "Adds the emotion associations of the words matching the NRC Hashtag Emotion Association Lexicon.\n" + "More info at: http://saifmohammad.com/WebPages/lexicons.html\n" + "Publication: Saif M. Mohammad, Svetlana Kiritchenko, Using Hashtags to Capture Fine Emotion Categories from Tweets.", commandLineParamIsFlag = true, commandLineParamName = "P", commandLineParamSynopsis = "-P", displayOrder = 13) public boolean isUseNrcHashEmo() { return useNrcHashEmo; }
@OptionMetadata( displayName = "learningRate", description = "The learning rate (default = 0.025).", commandLineParamName = "learningRate", commandLineParamSynopsis = "-learningRate <double>", displayOrder = 16 ) public double getLearningRate() { return learningRate; }
@OptionMetadata( displayName = "learning rate policy", description = "The learning rate policy (default = None).", commandLineParamName = "learningRatePolicy", commandLineParamSynopsis = "-learningRatePolicy <string>", displayOrder = 2 ) public LearningRatePolicy getLearningRatePolicy() { return learningRatePolicy; }
@OptionMetadata(displayName = "useNegation", description = "Counts the number of negating words in the tweet.", commandLineParamIsFlag = true, commandLineParamName = "T", commandLineParamSynopsis = "-T", displayOrder = 16) public boolean isUseNegation() { return useNegation; }
@OptionMetadata( displayName = "gradient normalization threshold", description = "The gradient normalization threshold (default = 1).", commandLineParamName = "gradNormThreshold", commandLineParamSynopsis = "-gradNormThreshold <double>", displayOrder = 23 ) public double getGradientNormalizationThreshold() { return this.gradientNormalizationThreshold; }
@OptionMetadata(displayName = "wordIndex", description = "The word index (starting from 1) of the target string attribute. Start and last are valid values." + "\t(default last).", commandLineParamName = "I", commandLineParamSynopsis = "-I <col>", displayOrder = 0) public String getWordIndex() { return m_WordIndex.getSingleIndex(); }
@OptionMetadata( displayName = "dropout parameter", description = "The dropout parameter (default = 0).", commandLineParamName = "dropout", commandLineParamSynopsis = "-dropout <double>", displayOrder = 15 ) public double getDropOut() { return this.dropOut; }
@OptionMetadata(displayName = "ArffLexiconWordLabeller", description = "The specification of a lexicon evaluator. This option can be used multiple times.", commandLineParamName = "lexicon_evaluator", commandLineParamSynopsis = "-lexicon_labeller <string>", displayOrder = 3) public ArffLexiconWordLabeller[] getLexiconLabs() { return lexiconLabs; }
@OptionMetadata(displayName = "minAttDocs", description = "Minimum frequency of a sparse attribute to be considered in the attribute space.", commandLineParamName = "M", commandLineParamSynopsis = "-M <int>", displayOrder = 6) public int getMinAttDocs() { return minAttDocs; }
@OptionMetadata(displayName = "createWordAtts", description = "True for creating unigram attributes.", commandLineParamIsFlag = true, commandLineParamName = "W", commandLineParamSynopsis = "-W", displayOrder = 7) public boolean isCreateWordAtts() { return createWordAtts; }
@OptionMetadata(displayName = "createClustAtts", description = "True for creating attributes using word clusters", commandLineParamIsFlag = true, commandLineParamName = "C", commandLineParamSynopsis = "-C", displayOrder = 8) public void setCreateClustAtts(boolean createClustAtts) { this.createClustAtts = createClustAtts; }
@OptionMetadata( displayName = "truncation length", description = "The maximum number of tokens per document (default = 100).", commandLineParamName = "truncationLength", commandLineParamSynopsis = "-truncationLength <int>", displayOrder = 2 ) public int getTruncateLength() { return truncateLength; }
@OptionMetadata( displayName = "loss function", description = "The loss function to use (default = LossMCXENT).", commandLineParamName = "lossFn", commandLineParamSynopsis = "-lossFn <specification>", displayOrder = 1 ) public ILossFunction getLossFn() { return this.lossFn; }
@OptionMetadata(displayName = "tweetsPerCentroid", description = "The number of tweets to average in each generated instance. \t default: 10", commandLineParamName = "A", commandLineParamSynopsis = "-A <int>", displayOrder = 11) public int getTweetsPerCentroid() { return tweetsPerCentroid; }
/** * Returns the custom properties file in use, if any. * * @return the custom props file, null if none used */ @OptionMetadata( displayName = "DB config file", description = "The custom properties that the user can use to override the default ones.", displayOrder = 8) @FilePropertyMetadata(fileChooserDialogType = JFileChooser.OPEN_DIALOG, directoriesOnly = false) public File getCustomPropsFile() { return m_CustomPropsFile; }
@OptionMetadata(displayName = "numNegInstances", description = "The number of negative instances to generate. \t default: 1000", commandLineParamName = "nneg", commandLineParamSynopsis = "-nneg <int>", displayOrder = 13) public int getNumNegInstances() { return numNegInstances; }
@OptionMetadata( displayName = "eps", description = "The value of the eps parameter (default = 1e-8).", commandLineParamName = "eps", commandLineParamSynopsis = "-eps <double>", displayOrder = 2 ) public double getEps() { return super.getEps(); }
@OptionMetadata( displayName = "token pre processor", description = "The token pre processor.", commandLineParamName = "tokenPreProcessor", commandLineParamSynopsis = "-tokenPreProcessor <string>", displayOrder = 4 ) public TokenPreProcess getTokenPreProcess() { return tokenPreProcess; }
/** * Set the log file * * @param logFile the log file */ @OptionMetadata( displayName = "log file", description = "The name of the log file to write loss information to " + "(default = $WEKA_HOME/network.log).", commandLineParamName = "logFile", commandLineParamSynopsis = "-logFile <string>", displayOrder = 1 ) public void setLogFile(File logFile) { this.logFile = logFile; }
@OptionMetadata( displayName = "learningrate", description = "The learningrate to use (default = 0.1).", commandLineParamName = "learningRate", commandLineParamSynopsis = "-learningRate <double>", displayOrder = 13 ) public double getLearningRate() { return learningRate; }