Python IPython.display 模块,clear_output() 实例源码

我们从Python开源项目中,提取了以下14个代码示例,用于说明如何使用IPython.display.clear_output()

项目:chxanalys    作者:yugangzhang    | 项目源码 | 文件源码
def displayResult(self):
        fig = plt.figure(101)
        plt.subplot(221)
        plt.imshow(np.abs(self.reconstruction),origin='lower')
        plt.draw()
        plt.title('Reconstruction Magnitude')
        plt.subplot(222)
        plt.imshow(np.angle(self.reconstruction),origin='lower')
        plt.draw()
        plt.title('Reconstruction Phase')
        plt.subplot(223)
        plt.imshow(np.abs(self.aperture),origin='lower')
        plt.title("Aperture Magnitude")
        plt.draw()
        plt.subplot(224)
        plt.imshow(np.angle(self.aperture),origin='lower')
        plt.title("Aperture Phase")
        plt.draw()
        fig.canvas.draw()


        #fig.tight_layout()
        # display.display(fig)
        # display.clear_output(wait=True)
        # time.sleep(.00001)
项目:CatchGame-QLearningExample-TensorFlow    作者:solaris33    | 项目源码 | 文件源码
def drawState(fruitRow, fruitColumn, basket):
  global gridSize
  # column is the x axis
  fruitX = fruitColumn 
  # Invert matrix style points to coordinates
  fruitY = (gridSize - fruitRow + 1)
  statusTitle = "Wins: " + str(winCount) + "  Losses: " + str(loseCount) + "  TotalGame: " + str(numberOfGames)
  axis.set_title(statusTitle, fontsize=30)
  for p in [
    patches.Rectangle(
        ((ground - 1), (ground)), 11, 10,
        facecolor="#000000"      # Black
    ),
    patches.Rectangle(
        (basket - 1, ground), 2, 0.5,
        facecolor="#FF0000"     # No background
    ),
    patches.Rectangle(
        (fruitX - 0.5, fruitY - 0.5), 1, 1,
        facecolor="#FF0000"       # red 
    ),   
    ]:
      axis.add_patch(p)
  display.clear_output(wait=True)
  display.display(pl.gcf())
项目:TensorFlow_Examples    作者:solaris33    | 项目源码 | 文件源码
def drawState(fruitRow, fruitColumn, basket):
  global gridSize
  # column is the x axis
  fruitX = fruitColumn 
  # Invert matrix style points to coordinates
  fruitY = (gridSize - fruitRow + 1)
  statusTitle = "Wins: " + str(winCount) + "  Losses: " + str(loseCount) + "  TotalGame: " + str(numberOfGames)
  axis.set_title(statusTitle, fontsize=30)
  for p in [
    patches.Rectangle(
        ((ground - 1), (ground)), 11, 10,
        facecolor="#000000"      # Black
    ),
    patches.Rectangle(
        (basket - 1, ground), 2, 0.5,
        facecolor="#FF0000"     # No background
    ),
    patches.Rectangle(
        (fruitX - 0.5, fruitY - 0.5), 1, 1,
        facecolor="#FF0000"       # red 
    ),   
    ]:
      axis.add_patch(p)
  display.clear_output(wait=True)
  display.display(pl.gcf())
项目:ro_sgns    作者:AlexGrinch    | 项目源码 | 文件源码
def plot_dynamics(vecs, vec2, n=5, MAX_ITER=100):
    """
    Plot how the distances between pairs change with each n
    iterations of the optimization method.
    """

    for i in xrange(MAX_ITER):
        if (i%n==0):
            plt.clf()
            plt.xlim([-0.01, 1.2])
            plt.plot(vecs[i], vec2, 'ro', color='blue')
            plt.grid()
            display.clear_output(wait=True)
            display.display(plt.gcf())
    plt.clf()

    fig, ax = plt.subplots(1, 2, figsize=(13, 4))
    for i in xrange(2):
        ax[i].set_xlim([-0.01, 1.2])
        ax[i].plot(vecs[-i], vec2, 'ro', color='blue')
        ax[i].set_title(str(i*MAX_ITER)+' iterations')
        ax[i].set_xlabel('Cosine distance', fontsize=14)
        ax[i].set_ylabel('Assesor grade', fontsize=14)
        ax[i].grid()
项目:altair_widgets    作者:altair-viz    | 项目源码 | 文件源码
def plot(self, show=True):
        """ Assumes nothing in self.settings is None (i.e., there are no keys
        in settings such that settings[key] == None"""

        kwargs = {e['encoding']: _get_plot_command(e)
                  for e in self.settings['encodings']}

        mark_opts = {k: v for k, v in self.settings['mark'].items()}
        mark = mark_opts.pop('mark')
        Chart_mark = getattr(altair.Chart(self.df), mark)
        self.chart = Chart_mark(**mark_opts).encode(**kwargs)
        if show and self.show:
            clear_output()
            display(self.chart)
项目:altair_widgets    作者:altair-viz    | 项目源码 | 文件源码
def _add_dim(self, button):
        i = len(self.controller.children) - 1
        encoding = _get_encodings()[i]
        shelf = self._create_shelf(i=i)
        kids = self.controller.children
        teens = list(kids)[:-1] + [shelf] + [list(kids)[-1]]
        self.controller.children = teens

        # clear_output()
        # display(self.controller)
        self.settings['encodings'] += [{'encoding': encoding}]
        self.plot(self.settings)
项目:elfi    作者:elfi-dev    | 项目源码 | 文件源码
def _update_interactive(displays, options):
    displays = displays or []
    if options.get('interactive'):
        from IPython import display
        display.clear_output(wait=True)
        displays.insert(0, plt.gcf())
        display.display(*displays)
项目:SemiSupervised_itterativeCNN    作者:styloInt    | 项目源码 | 文件源码
def do_training(solver, step_size, nb_step=0):
        solver.step(step_size)

        heat_map = solver.test_nets[0].blobs["score-final"].data[0,:,:,:].transpose(1,2,0)
        heat_map_normalize = normalize_heatmap(heat_map)
#         heat_map_normalize = heat_map
        minimum = np.min(heat_map[:,:,0])

        nb_subplot = 4
        plt.figure(figsize=(10,10))
        image_test = solver.test_nets[0].blobs["data"].data[0,0,:,:]
        image_test_label = solver.test_nets[0].blobs["label"].data[0,0,:,:]
        plt.subplot(1,nb_subplot,1)
        plt.imshow(image_test)
        plt.title("image test")
        plt.subplot(1,nb_subplot,2)
        plt.imshow(image_test_label)
        plt.title("Label of the test image")
        plt.subplot(1,nb_subplot,3)
        plt.imshow(np.append(heat_map_normalize, np.zeros((heat_map_normalize.shape[0], heat_map_normalize.shape[1],1)), 2))
        plt.title("Heat map")
        # plt.subplot(1,nb_subplot,4)
        # plt.imshow(np.append(heat_map_normalize, np.zeros(heat_map_normalize.shape[0], heat_map_normalize.shape[1],1), 3))
        # plt.title("score")
        plt.subplot(1,nb_subplot,4)
        plt.imshow(solver.test_nets[0].blobs["score-final"].data[0,:,:,:].transpose(1,2,0).argmax(2), vmin=0, vmax=1)
        plt.title("After : " + str(nb_step+step_size) + " itterations")
        display.display(plt.gcf())
        display.clear_output(wait=True)
        time.sleep(1)

###
    # save_image : place where to save the image
###
项目:PyNIT    作者:dvm-shlee    | 项目源码 | 文件源码
def clear_output(): pass
项目:tutorials    作者:pytorch    | 项目源码 | 文件源码
def plot_durations():
    plt.figure(2)
    plt.clf()
    durations_t = torch.FloatTensor(episode_durations)
    plt.title('Training...')
    plt.xlabel('Episode')
    plt.ylabel('Duration')
    plt.plot(durations_t.numpy())
    # Take 100 episode averages and plot them too
    if len(durations_t) >= 100:
        means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
        means = torch.cat((torch.zeros(99), means))
        plt.plot(means.numpy())

    plt.pause(0.001)  # pause a bit so that plots are updated
    if is_ipython:
        display.clear_output(wait=True)
        display.display(plt.gcf())


######################################################################
# Training loop
# ^^^^^^^^^^^^^
#
# Finally, the code for training our model.
#
# Here, you can find an ``optimize_model`` function that performs a
# single step of the optimization. It first samples a batch, concatenates
# all the tensors into a single one, computes :math:`Q(s_t, a_t)` and
# :math:`V(s_{t+1}) = \max_a Q(s_{t+1}, a)`, and combines them into our
# loss. By defition we set :math:`V(s) = 0` if :math:`s` is a terminal
# state.
项目:neural-decoder    作者:Krastanov    | 项目源码 | 文件源码
def find_threshold(Lsmall=3, Llarge=5, p=0.8, high=1, low=0.79, samples=1000, logfile=None):
    '''Use binary search (between two sizes of codes) to find the threshold for the toric code.'''
    ps = []
    samples_small = []
    samples_large = []
    def step(p):
        ps.append(p)
        samples_small.append(stat_estimator(sample(Lsmall, p, samples=samples)))
        samples_large.append(stat_estimator(sample(Llarge, p, samples=samples)))
    def intersection(xs, y1s, y2s, log=True):
        d = np.linalg.det
        if log:
            y1s, y2s = np.log([y1s,y2s])
        ones = np.array([1.,1.])
        dx  = d([xs , ones])
        dy1 = d([y1s, ones])
        dy2 = d([y2s, ones])
        x = (d([xs, y1s])-d([xs, y2s])) / (dy2-dy1)
        y = (d([xs, y1s])*dy2 - d([xs, y2s])*dy1) / dx / (dy2-dy1)
        if log:
            y = np.exp(y)
        return x, y
    step(p)
    if logfile:
        with open(logfile, 'w') as f:
            ss = samples_small[0]
            sl = samples_large[0]
            f.write(str((np.vstack([ps, [ss[0]], [ss[1]-ss[0]], [ss[2]-ss[0]], [sl[0]], [sl[1]-sl[0]], [sl[2]-sl[0]]]), (ss[0]+sl[0])/2, ps[0])))
    else:
        f = plt.figure()
        s = f.add_subplot(1,1,1)
    while not (samples_large[-1][1]<samples_small[-1][0]<samples_large[-1][2]
            or samples_small[-1][1]<samples_large[-1][0]<samples_small[-1][2]):
        if samples_small[-1][0]<samples_large[-1][0]:
            p, high = low+(ps[-1]-low)/2, p
        else:
            p, low = ps[-1]+(high-ps[-1])/2, p
        step(p)
        _argsort = np.argsort(ps)
        _ps = np.array(ps)[_argsort]
        _ss = np.array(samples_small)
        _small = _ss[_argsort,0]
        _small_err = np.abs(_ss[_argsort,1:].T - _small)
        _sl = np.array(samples_large)
        _large = _sl[_argsort,0]
        _large_err = np.abs(_sl[_argsort,1:].T - _large)
        ix, iy = intersection(ps[-2:],[_[0] for _ in samples_small[-2:]],[_[0] for _ in samples_large[-2:]])
        if logfile:
            with open(logfile, 'w') as f:
                f.write(str((np.vstack([_ps, _small, _small_err, _large, _large_err]), iy, ix)))
        else:
            s.clear()
            s.errorbar(_ps,_small,yerr=_small_err,alpha=0.6,label=str(Lsmall))
            s.errorbar(_ps,_large,yerr=_large_err,alpha=0.6,label=str(Llarge))
            s.plot([ix],[iy],'ro',alpha=0.5)
            s.set_title('intersection at p = %f'%ix)
            s.set_yscale('log')
            display.clear_output(wait=True)
            display.display(f)

    return ps, samples_small, samples_large
项目:kerlym    作者:osh    | 项目源码 | 文件源码
def update_stats(self, stats, tid=0):
        self.e += 1
        # update stats store
        for k in stats.keys():
            self.stats[k].add( stats[k] )

        # only plot from thread 0
        if self.stats == None or tid > 0:
            return

        # plot if its time
        if(self.e >= self.next_plot):
            self.next_plot = self.e + self.stats_rate
            if self.ipy_clear:
                from IPython import display
                display.clear_output(wait=True)
            fig = plt.figure(1)
            fig.canvas.set_window_title("A3C Training Stats for %s"%(self.experiment))
            plt.clf()
            plt.subplot(2,2,1)
            self.stats["tr"].plot()
            plt.title("Total Reward per Episode")
            plt.xlabel("Episode")
            plt.ylabel("Total Reward")
            plt.legend(loc=2)
            plt.subplot(2,2,2)
            self.stats["ft"].plot()
            plt.title("Finishing Time per Episode")
            plt.xlabel("Episode")
            plt.ylabel("Finishing Time")
            plt.legend(loc=2)
            plt.subplot(2,2,3)
            self.stats["maxvf"].plot2(fill_col='lightblue', label='Avg Max VF')
            self.stats["minvf"].plot2(fill_col='slategrey', label='Avg Min VF')
            plt.title("Value Function Outputs")
            plt.xlabel("Episode")
            plt.ylabel("Value Fn")
            plt.legend(loc=2)
            ax = plt.subplot(2,2,4)
            self.stats["cost"].plot2()
            plt.title("Training Loss")
            plt.xlabel("Training Epoch")
            plt.ylabel("Loss")
            try:
#                ax.set_yscale("log", nonposy='clip')
                plt.tight_layout()
            except:
                pass
            plt.show(block=False)
            plt.draw()
            plt.pause(0.001)
项目:kerlym    作者:osh    | 项目源码 | 文件源码
def update_stats(self, stats, tid=0):
        self.e += 1
        # update stats store
        for k in stats.keys():
            self.stats[k].add( stats[k] )

        # only plot from thread 0
        if self.stats == None or tid > 0:
            return

        # plot if its time
        if(self.e >= self.next_plot):
            self.next_plot = self.e + self.stats_rate
            if self.ipy_clear:
                from IPython import display
                display.clear_output(wait=True)
            fig = plt.figure(1)
            fig.canvas.set_window_title("DQN Training Stats for %s"%(self.experiment))
            plt.clf()
            plt.subplot(2,2,1)
            self.stats["tr"].plot()
            plt.title("Total Reward per Episode")
            plt.xlabel("Episode")
            plt.ylabel("Total Reward")
            plt.legend(loc=2)
            plt.subplot(2,2,2)
            self.stats["ft"].plot()
            plt.title("Finishing Time per Episode")
            plt.xlabel("Episode")
            plt.ylabel("Finishing Time")
            plt.legend(loc=2)
            plt.subplot(2,2,3)
            self.stats["maxvf"].plot2(fill_col='lightblue', label='Avg Max VF')
            self.stats["minvf"].plot2(fill_col='slategrey', label='Avg Min VF')
            plt.title("Value Function Outputs")
            plt.xlabel("Episode")
            plt.ylabel("Value Fn")
            plt.legend(loc=2)
            ax = plt.subplot(2,2,4)
            self.stats["cost"].plot2()
            plt.title("Training Loss")
            plt.xlabel("Training Epoch")
            plt.ylabel("Loss")
            try:
#                ax.set_yscale("log", nonposy='clip')
                plt.tight_layout()
            except:
                pass
            plt.show(block=False)
            plt.draw()
            plt.pause(0.001)
项目:DQN_pendulum    作者:ashitani    | 项目源码 | 文件源码
def run(self, train=True, movie=False, enableLog=False):

        self.env.reset(0,0)

        self.reset_seq()
        total_reward=0

        for i in range(300):
            # ???state????????????
            old_seq = self.seq.copy()

            # ?????????????
            action = self.agent.get_action(old_seq,train)

            # ??????????
            self.env.update_state(action)
            reward=self.env.get_reward()
            total_reward +=reward

            # ???????state???????????
            state = self.env.get_state()
            self.push_seq(state)
            new_seq = self.seq.copy()

            # ??????????????????
            self.agent.experience_local(old_seq, action, reward, new_seq)

            if enableLog:
                self.log.append(np.hstack([old_seq[0], action, reward]))

            # ????????????
            if movie:
                display.clear_output(wait=True)
                display.display(self.env.get_svg())
                time.sleep(0.01)


        # ????????????????????????????
        self.agent.experience_global(total_reward)

        if train:
            # ??????????????????
            self.agent.update_model(old_seq, action, reward, new_seq)
            self.agent.reduce_epsilon()

        if enableLog:
            return total_reward,self.log

        return total_reward