我们从Python开源项目中,提取了以下2个代码示例,用于说明如何使用argparse.MetavarTypeHelpFormatter()。
def parse_arguments(description: str): logging.getLogger().setLevel(logging.DEBUG) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("requests").setLevel(logging.WARNING) parser = argparse.ArgumentParser( description=description, formatter_class=argparse.MetavarTypeHelpFormatter) parser.add_argument('--port', type=int, default=5103, help='Port to bind flask App to, default is 5103') parser.add_argument('--train', type=str, help='Path to csv file for training') parser.add_argument('--buy', type=str, help='Path to buyOffer.csv') parser.add_argument('--merchant', type=str, help='Merchant ID for initial csv parsing') parser.add_argument('--test', type=str, help='Path to csv file for cross validation') parser.add_argument('--output', type=str, help='Output will be written into the spedified file') return parser.parse_args()
def _main_(): parser = argparse.ArgumentParser(description="Detect object in an image", formatter_class=argparse.MetavarTypeHelpFormatter) parser.add_argument('--path', type=str, default='./assets/example.jpg', help="Path to image file") parser.add_argument('--weights', type=str, default='./assets/coco_yolov2.weights', help="Path to pre-trained weight file") parser.add_argument('--output_dir', type=str, default=None, help="Output Directory") parser.add_argument('--iou', type=float, default=0.5, help="Intersection over Union (IoU) value") parser.add_argument('--threshold', type=float, default=0.6, help="Score Threshold value (minimum accuracy)") # ############ # Parse Config # ############ args = parser.parse_args() anchors, label_dict = parse_config(cfg) # ################### # Define Keras Model # ################### model = yolov2_darknet(is_training = False, img_size = cfg.IMG_INPUT_SIZE, anchors = anchors, num_classes = cfg.N_CLASSES, iou = args.iou, scores_threshold = args.threshold) model.load_weights(args.weights) model.summary() # ##################### # Make one prediction # # ##################### image = np.expand_dims(cv2.imread(args.path), axis=0) pred_bboxes, pred_classes, pred_scores = model.predict_on_batch(image) pred_classes = [label_dict[idx] for idx in pred_classes] # ################# # Display Result # # ################# h, w, _ = image.shape if args.output_dir is not None: result = draw(image, pred_bboxes, pred_classes, pred_scores) cv2.imwrite(os.path.join(args.output_dir, args.path.split('/')[-1].split('.')[0] + '_result.jpg'), result)