我们从Python开源项目中,提取了以下23个代码示例,用于说明如何使用ast.Div()。
def num_negate(op): top = type(op) neg = not op.num_negated if hasattr(op, "num_negated") else True if top == ast.Add: newOp = ast.Sub() elif top == ast.Sub: newOp = ast.Add() elif top in [ast.Mult, ast.Div, ast.Mod, ast.Pow, ast.LShift, ast.RShift, ast.BitOr, ast.BitXor, ast.BitAnd, ast.FloorDiv]: return None # can't negate this elif top in [ast.Num, ast.Name]: # this is a normal value, so put a - in front of it newOp = ast.UnaryOp(ast.USub(addedNeg=True), op) else: log("astTools\tnum_negate\tUnusual type: " + str(top), "bug") transferMetaData(op, newOp) newOp.num_negated = neg return newOp
def visit_AugAssign(self, node): """ AugAssign(expr target, operator op, expr value) """ # TODO: Make sure that all the logic in Assign also works in AugAssign target = self.visit(node.target) value = self.visit(node.value) if isinstance(node.op, ast.Pow): self.write("%s = %s ** %s" % (target, target, value)) #elif isinstance(node.op, ast.FloorDiv): # #self.write("%s = Math.floor((%s)/(%s));" % (target, target, value)) # self.write("%s = (%s/%s)" % (target, target, value)) elif isinstance(node.op, ast.Div): if re.search(r"Numo::", target) or re.search(r"Numo::", value): self.write("%s = (%s)/(%s)" % (target, target, value)) else: self.write("%s = (%s)/(%s).to_f" % (target, target, value)) else: self.write("%s %s= %s" % (target, self.get_binary_op(node), value))
def visit_BinOp(self, node): if isinstance(node.op, ast.Mod) and isinstance(node.left, ast.Str): left = self.visit(node.left) # 'b=%(b)0d and c=%(c)d and d=%(d)d' => 'b=%<b>0d and c=%<c>d and d=%<d>d' left = re.sub(r"(.+?%)\((.+?)\)(.+?)", r"\1<\2>\3", left) self._dict_format = True right = self.visit(node.right) self._dict_format = False return "%s %% %s" % (left, right) left = self.visit(node.left) right = self.visit(node.right) if isinstance(node.op, ast.Pow): return "%s ** %s" % (left, right) if isinstance(node.op, ast.Div): if re.search(r"Numo::", left) or re.search(r"Numo::", right): return "(%s)/(%s)" % (left, right) else: return "(%s)/(%s).to_f" % (left, right) return "(%s)%s(%s)" % (left, self.get_binary_op(node), right)
def eval_numeric_constexpr(node: ast.AST) -> int: if isinstance(node, ast.Num): return node.n if isinstance(node, ast.UnaryOp): if isinstance(node.op, ast.UAdd): return +eval_numeric_constexpr(node.operand) elif isinstance(node.op, ast.USub): return -eval_numeric_constexpr(node.operand) else: return None if isinstance(node, ast.BinOp): if isinstance(node.op, ast.Add): return eval_numeric_constexpr(node.left) + eval_numeric_constexpr(node.right) if isinstance(node.op, ast.Sub): return eval_numeric_constexpr(node.left) - eval_numeric_constexpr(node.right) if isinstance(node.op, ast.Mult): return eval_numeric_constexpr(node.left) * eval_numeric_constexpr(node.right) if isinstance(node.op, ast.Div): return eval_numeric_constexpr(node.left) / eval_numeric_constexpr(node.right) return None
def binop_str(op: ast.AST) -> str: if isinstance(op, ast.Add): return '+' if isinstance(op, ast.Sub): return '-' if isinstance(op, ast.Mult): return '*' if isinstance(op, ast.Div): return '/ ' if isinstance(op, ast.Mod): return '%' if isinstance(op, ast.LShift): return '<<' if isinstance(op, ast.RShift): return '>>' if isinstance(op, ast.BitOr): return '|' if isinstance(op, ast.BitXor): return '^' if isinstance(op, ast.BitAnd): return '&' if isinstance(op, ast.MatMult): return '@' error(loc(op), "Invalid binary operator encountered: {0}:{1}. Check supported intrinsics.".format(op.lineno, op.col_offset)) return 'INVALID_BINOP'
def eval_expr(expr): import ast import operator as op op = { ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.Pow: op.pow, ast.BitXor: op.xor, ast.USub: op.neg, } def eval_(node): if isinstance(node, ast.Num): return fractions.Fraction(node.n) elif isinstance(node, ast.BinOp): return op[type(node.op)](eval_(node.left), eval_(node.right)) elif isinstance(node, ast.UnaryOp): return op[type(node.op)](eval_(node.operand)) raise TypeError(node) return eval_(ast.parse(str(expr), mode='eval').body)
def parse_unit(item): if isinstance(item, ast.Name): if item.id not in valid_units: raise InvalidTypeException("Invalid base unit", item) return {item.id: 1} elif isinstance(item, ast.Num) and item.n == 1: return {} elif not isinstance(item, ast.BinOp): raise InvalidTypeException("Invalid unit expression", item) elif isinstance(item.op, ast.Mult): left, right = parse_unit(item.left), parse_unit(item.right) return combine_units(left, right) elif isinstance(item.op, ast.Div): left, right = parse_unit(item.left), parse_unit(item.right) return combine_units(left, right, div=True) elif isinstance(item.op, ast.Pow): if not isinstance(item.left, ast.Name): raise InvalidTypeException("Can only raise a base type to an exponent", item) if not isinstance(item.right, ast.Num) or not isinstance(item.right.n, int) or item.right.n <= 0: raise InvalidTypeException("Exponent must be positive integer", item) return {item.left.id: item.right.n} else: raise InvalidTypeException("Invalid unit expression", item) # Parses an expression representing a type. Annotation refers to whether # the type is to be located in memory or storage
def aug_assign(self): target = self.get_target(self.stmt.target) sub = Expr.parse_value_expr(self.stmt.value, self.context) if not isinstance(self.stmt.op, (ast.Add, ast.Sub, ast.Mult, ast.Div, ast.Mod)): raise Exception("Unsupported operator for augassign") if not isinstance(target.typ, BaseType): raise TypeMismatchException("Can only use aug-assign operators with simple types!", self.stmt.target) if target.location == 'storage': o = Expr.parse_value_expr(ast.BinOp(left=LLLnode.from_list(['sload', '_stloc'], typ=target.typ, pos=target.pos), right=sub, op=self.stmt.op, lineno=self.stmt.lineno, col_offset=self.stmt.col_offset), self.context) return LLLnode.from_list(['with', '_stloc', target, ['sstore', '_stloc', base_type_conversion(o, o.typ, target.typ)]], typ=None, pos=getpos(self.stmt)) elif target.location == 'memory': o = Expr.parse_value_expr(ast.BinOp(left=LLLnode.from_list(['mload', '_mloc'], typ=target.typ, pos=target.pos), right=sub, op=self.stmt.op, lineno=self.stmt.lineno, col_offset=self.stmt.col_offset), self.context) return LLLnode.from_list(['with', '_mloc', target, ['mstore', '_mloc', base_type_conversion(o, o.typ, target.typ)]], typ=None, pos=getpos(self.stmt))
def visit_BinOp(self, node: ast.BinOp): node = self.generic_visit(node) if self._is_numeric_pow(node): left, right = node.left, node.right degree = ( right.n if isinstance(right, ast.Num) else -right.operand.n if isinstance(right.op, ast.USub) else right.operand.n ) degree = int(degree) if abs(degree) == 0: node = ast.copy_location(ast.Num(n = 1), node) elif abs(degree) == 1: node = node.left elif 2 <= abs(degree) <= self.MAX_DEGREE: for _ in range(1, abs(degree)): new_node = ast.BinOp\ ( left = left , op = ast.Mult() , right = copy(node.left) ) left = new_node = ast.copy_location(new_node, node) node = new_node else: return node if degree < 0: new_node = ast.BinOp\ ( left = ast.Num(n = 1) , op = ast.Div() , right = node ) node = ast.copy_location(new_node, node) return node
def doBinaryOp(op, l, r): """Perform the given AST binary operation on the values""" top = type(op) if top == ast.Add: return l + r elif top == ast.Sub: return l - r elif top == ast.Mult: return l * r elif top == ast.Div: # Don't bother if this will be a really long float- it won't work properly! # Also, in Python 3 this is floating division, so perform it accordingly. val = 1.0 * l / r if (val * 1e10 % 1.0) != 0: raise Exception("Repeating Float") return val elif top == ast.Mod: return l % r elif top == ast.Pow: return l ** r elif top == ast.LShift: return l << r elif top == ast.RShift: return l >> r elif top == ast.BitOr: return l | r elif top == ast.BitXor: return l ^ r elif top == ast.BitAnd: return l & r elif top == ast.FloorDiv: return l // r
def visit_AugAssign(self, node): if node.op.__class__ != ast.FloorDiv: return node dummy_op = ast.BinOp(left=node.target, op=ast.Div(), right=node.value) dummy_int = ast.Name(id="int", ctx=ast.Load()) dummy_call = ast.Call(func=dummy_int, args=[dummy_op], keywords=[], starargs=None, kwargs=None) return ast.Assign(targets=[node.target], value=dummy_call)
def visit_BinOp(self, node): if node.op.__class__ != ast.FloorDiv: return node dummy_op = ast.BinOp(left=node.left, op=ast.Div(), right=node.right) dummy_int = ast.Name(id="int", ctx=ast.Load()) return ast.Call(func=dummy_int, args=[dummy_op], keywords=[], starargs=None, kwargs=None)
def visit_BinOp(self, node): if node.op.__class__ in self.operators: sympy_class = self.operators[node.op.__class__] right = self.visit(node.right) if isinstance(node.op, ast.Sub): right = ast.UnaryOp(op=ast.USub(), operand=right) elif isinstance(node.op, ast.Div): right = ast.Call( func=ast.Name(id='Pow', ctx=ast.Load()), args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))], keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))], starargs=None, kwargs=None ) new_node = ast.Call( func=ast.Name(id=sympy_class, ctx=ast.Load()), args=[self.visit(node.left), right], keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))], starargs=None, kwargs=None ) if sympy_class in ('Add', 'Mul'): # Denest Add or Mul as appropriate new_node.args = self.flatten(new_node.args, sympy_class) return new_node return node
def get_binary_op_str(bin_op_node): """Returns the string representation of the binary operator node (e.g. +, -, etc.). For some reason astor doesn't implement this??? """ if isinstance(bin_op_node, ast.Add): return "+" elif isinstance(bin_op_node, ast.Sub): return "-" elif isinstance(bin_op_node, ast.Mult): return "*" elif isinstance(bin_op_node, ast.Div): return "/" elif isinstance(bin_op_node, ast.Mod): return "%" elif isinstance(bin_op_node, ast.Pow): return "**" elif isinstance(bin_op_node, ast.LShift): return "<<" elif isinstance(bin_op_node, ast.RShift): return ">>" else: raise ValueError("No string defined for binary operator node %s" % \ bin_op_node.__class__.__name__)
def get_op_string(op_class): return { ast.Add: '+', ast.Sub: '-', ast.Div: '/', ast.Mult: '*' }[op_class.__class__] # For expr code
def binary_operation_type(left_type, op, right_type, lineno, solver): """Infer the type of a binary operation result""" if isinstance(op, ast.Add): inference_func = _infer_add elif isinstance(op, ast.Mult): inference_func = _infer_mult elif isinstance(op, ast.Div): inference_func = _infer_div elif isinstance(op, (ast.BitOr, ast.BitXor, ast.BitAnd)): return _infer_bitwise(left_type, right_type, op, lineno, solver) else: return _infer_arithmetic(left_type, right_type, op, lineno, solver) return inference_func(left_type, right_type, lineno, solver)
def mutate_Mult_to_Div(self, node): if self.should_mutate(node): return ast.Div() raise MutationResign()
def mutate_FloorDiv_to_Div(self, node): if self.should_mutate(node): return ast.Div() raise MutationResign()
def pythonast(self, args, tonative=False): return ast.BinOp(args[0], ast.Div(), ast.Call(ast.Name("float", ast.Load()), [args[1]], [], None, None))
def pythonast(self, args, tonative=False): arg, = args justlog = ast.Call(ast.Attribute(ast.Name("$math", ast.Load()), "log", ast.Load()), [arg], [], None, None) if self.base == math.e: if tonative: return justlog else: return ast.IfExp(ast.Compare(arg, [ast.Gt()], [ast.Num(0)]), justlog, ast.Num(-inf)) else: scaled = ast.BinOp(justlog, ast.Div(), ast.Num(math.log(self.base))) if tonative: return scaled else: return ast.IfExp(ast.Compare(arg, [ast.Gt()], [ast.Num(0)]), scaled, ast.Num(-inf))
def syn_BinOp(self, ctx, e): op = e.op if isinstance(op, ast.Div): ctx.ana(e.right, ieee) return ieee else: ctx.ana(e.right, self) return self
def visit_BinOp(self, node): if node.op.__class__ in self.operators: sympy_class = self.operators[node.op.__class__] right = self.visit(node.right) left = self.visit(node.left) if isinstance(node.left, ast.UnaryOp) and (isinstance(node.right, ast.UnaryOp) == 0) and sympy_class in ('Mul',): left, right = right, left if isinstance(node.op, ast.Sub): right = ast.UnaryOp(op=ast.USub(), operand=right) if isinstance(node.op, ast.Div): if isinstance(node.left, ast.UnaryOp): if isinstance(node.right,ast.UnaryOp): left, right = right, left left = ast.Call( func=ast.Name(id='Pow', ctx=ast.Load()), args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))], keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))], starargs=None, kwargs=None ) else: right = ast.Call( func=ast.Name(id='Pow', ctx=ast.Load()), args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))], keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))], starargs=None, kwargs=None ) new_node = ast.Call( func=ast.Name(id=sympy_class, ctx=ast.Load()), args=[left, right], keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))], starargs=None, kwargs=None ) if sympy_class in ('Add', 'Mul'): # Denest Add or Mul as appropriate new_node.args = self.flatten(new_node.args, sympy_class) return new_node return node
def _aslimit(value, lc): if isinstance(value, string_types): module = ast.parse(value) if isinstance(module, ast.Module) and len(module.body) == 1 and isinstance(module.body[0], ast.Expr): def restrictedeval(expr): if isinstance(expr, ast.Num): return expr.n elif isinstance(expr, ast.Name) and expr.id == "inf": return femtocode.typesystem.inf elif isinstance(expr, ast.Name) and expr.id == "pi": return math.pi elif isinstance(expr, ast.UnaryOp) and isinstance(expr.op, ast.USub): return -restrictedeval(expr.operand) elif isinstance(expr, ast.BinOp) and isinstance(expr.op, ast.Add): return restrictedeval(expr.left) + restrictedeval(expr.right) elif isinstance(expr, ast.BinOp) and isinstance(expr.op, ast.Sub): return restrictedeval(expr.left) - restrictedeval(expr.right) elif isinstance(expr, ast.BinOp) and isinstance(expr.op, ast.Mult): return restrictedeval(expr.left) * restrictedeval(expr.right) elif isinstance(expr, ast.BinOp) and isinstance(expr.op, ast.Div): return restrictedeval(expr.left) / restrictedeval(expr.right) elif isinstance(expr, ast.BinOp) and isinstance(expr.op, ast.Pow): return restrictedeval(expr.left) ** restrictedeval(expr.right) elif isinstance(expr, ast.Call) and isinstance(expr.func, ast.Name) and expr.func.id == "almost" and len(expr.args) == 1 and len(expr.keywords) == 0 and expr.kwargs is None and expr.starargs is None: return femtocode.typesystem.almost(restrictedeval(expr.args[0])) else: raise DatasetDeclaration.Error(lc, "couldn't parse as a min/max/least/most limit: {0}".format(value)) return restrictedeval(module.body[0].value) elif isinstance(value, (int, long, float)): return value elif isinstance(value, femtocode.typesystem.almost) and isinstance(value.real, (int, long, float)): return value else: raise DatasetDeclaration.Error(lc, "unrecognized type for min/max/least/most limit: {0}".format(value))