Python caffe.proto.caffe_pb2 模块,BlobProto() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用caffe.proto.caffe_pb2.BlobProto()

项目:sail    作者:GemHunt    | 项目源码 | 文件源码
def save_mean(mean, filename):
    """
    Saves mean to file

    Arguments:
    mean -- the mean as an np.ndarray
    filename -- the location to save the image
    """
    if filename.endswith('.binaryproto'):
        blob = caffe_pb2.BlobProto()
        blob.num = 1
        blob.channels = mean.shape[0]
        blob.height = mean.shape[1]
        blob.width = mean.shape[2]
        blob.data.extend(mean.astype(float).flat)
        with open(filename, 'wb') as outfile:
            outfile.write(blob.SerializeToString())

    elif filename.endswith(('.jpg', '.jpeg', '.png')):
        save_image(mean, filename)
    else:
        raise ValueError('unrecognized file extension')
项目:deepstacks    作者:guoxuesong    | 项目源码 | 文件源码
def load_mean_file(mean_file):
        if mean_file.endswith('.npy'):
            return np.load(mean_file)
        with open(mean_file, 'rb') as infile:
            blob = caffe_pb2.BlobProto()
            blob.MergeFromString(infile.read())
            if blob.HasField('shape'):
                blob_dims = blob.shape
                assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
            elif blob.HasField('num') and blob.HasField('channels') and \
                    blob.HasField('height') and blob.HasField('width'):
                blob_dims = (blob.num, blob.channels, blob.height, blob.width)
            else:
                raise ValueError('blob does not provide shape or 4d dimensions')
            #pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
            #print pixel.shape
            #t.set_mean('data', pixel)
            mean=np.reshape(blob.data, blob_dims[1:])
            #mean=mean[:,(256-224)//2:(256-224)//2+224,(256-224)//2:(256-224)//2+224]
        return mean
项目:emu    作者:mlosch    | 项目源码 | 文件源码
def _load_binaryproto(file):
        blob = caffe_pb2.BlobProto()
        data = open(file, 'rb').read()
        blob.ParseFromString(data)
        arr = np.array(caffe.io.blobproto_to_array(blob))
        return arr[0]
项目:TF-Examples    作者:CharlesShang    | 项目源码 | 文件源码
def load_mean_bgr():
    """ bgr mean pixel value image, [0, 255]. [height, width, 3] """
    with open("data/ResNet_mean.binaryproto", mode='rb') as f:
        data = f.read()
    blob = caffe_pb2.BlobProto()
    blob.ParseFromString(data)

    mean_bgr = caffe.io.blobproto_to_array(blob)[0]
    assert mean_bgr.shape == (3, 224, 224)

    return mean_bgr.transpose((1, 2, 0))
项目:have-fun-with-machine-learning    作者:humphd    | 项目源码 | 文件源码
def setup(self):
        mean_file = os.path.join(self.model_dir, 'mean.binaryproto')
        labels_file = os.path.join(self.model_dir, 'labels.txt')

        self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})
        self.transformer.set_transpose('data', (2, 0, 1))
        self.transformer.set_raw_scale('data', 255)
        self.transformer.set_channel_swap('data', (2, 1, 0))

        # set mean pixel
        with open(mean_file, 'rb') as infile:
            blob = caffe_pb2.BlobProto()
            blob.MergeFromString(infile.read())
            if blob.HasField('shape'):
                blob_dims = blob.shape
                assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is %s' % blob.shape
            elif blob.HasField('num') and blob.HasField('channels') and \
                    blob.HasField('height') and blob.HasField('width'):
                blob_dims = (blob.num, blob.channels, blob.height, blob.width)
            else:
                raise ValueError('blob does not provide shape or 4d dimensions')
            pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
            self.transformer.set_mean('data', pixel)

        # This is overkill here, since we only have 2 labels, but here's how we might read them.
        # Later we'd grab the label we want based on position (e.g., 0=dolphin, 1=seahorse)
        self.labels = np.loadtxt(labels_file, str, delimiter='\n')
项目:toothless    作者:ratt-ru    | 项目源码 | 文件源码
def get_transformer(deploy_file, mean_file=None):
    """
    Returns an instance of caffe.io.Transformer

    Arguments:
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    mean_file -- path to a .binaryproto file (optional)
    """
    network = caffe_pb2.NetParameter()
    with open(deploy_file) as infile:
        text_format.Merge(infile.read(), network)

    if network.input_shape:

        dims = network.input_shape[0].dim
    else:
        dims = network.input_dim[:4]


    #dims = network.input_dim

    t = caffe.io.Transformer(
            inputs = {'data': dims}
            )
    t.set_transpose('data', (2,0,1)) # transpose to (channels, height, width)

    # color images
    if dims[1] == 3:
        # channel swap
        t.set_channel_swap('data', (2,1,0))

    if mean_file:
        # set mean pixel
        with open(mean_file) as infile:
            blob = caffe_pb2.BlobProto()
            blob.MergeFromString(infile.read())
            if blob.HasField('shape'):
                blob_dims = blob.shape
                assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
            elif blob.HasField('num') and blob.HasField('channels') and \
                    blob.HasField('height') and blob.HasField('width'):
                blob_dims = (blob.num, blob.channels, blob.height, blob.width)
            else:
                raise ValueError('blob does not provide shape or 4d dimensions')
            pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
            t.set_mean('data', pixel)

    return t

# Load image to caffe
项目:GTSRB-caffe-model    作者:magnusja    | 项目源码 | 文件源码
def get_transformer(deploy_file, mean_file=None):
    """
    Returns an instance of caffe.io.Transformer

    Arguments:
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    mean_file -- path to a .binaryproto file (optional)
    """
    network = caffe_pb2.NetParameter()
    with open(deploy_file) as infile:
        text_format.Merge(infile.read(), network)

    if network.input_shape:
        dims = network.input_shape[0].dim
    else:
        dims = network.input_dim[:4]

    t = caffe.io.Transformer(
            inputs = {'data': dims}
            )
    t.set_transpose('data', (2,0,1)) # transpose to (channels, height, width)

    # color images
    if dims[1] == 3:
        # channel swap
        t.set_channel_swap('data', (2,1,0))

    if mean_file:
        # set mean pixel
        with open(mean_file,'rb') as infile:
            blob = caffe_pb2.BlobProto()
            blob.MergeFromString(infile.read())
            if blob.HasField('shape'):
                blob_dims = blob.shape
                assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
            elif blob.HasField('num') and blob.HasField('channels') and \
                    blob.HasField('height') and blob.HasField('width'):
                blob_dims = (blob.num, blob.channels, blob.height, blob.width)
            else:
                raise ValueError('blob does not provide shape or 4d dimensions')
            pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
            t.set_mean('data', pixel)

    return t
项目:Barebones-Flask-and-Caffe-Classifier    作者:alex-paterson    | 项目源码 | 文件源码
def get_transformer(deploy_file, mean_file=None):
    """
    Returns an instance of caffe.io.Transformer

    Arguments:
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    mean_file -- path to a .binaryproto file (optional)
    """
    network = caffe_pb2.NetParameter()
    with open(deploy_file) as infile:
        text_format.Merge(infile.read(), network)

    if network.input_shape:
        dims = network.input_shape[0].dim
    else:
        dims = network.input_dim[:4]

    t = caffe.io.Transformer(
            inputs = {'data': dims}
            )
    t.set_transpose('data', (2,0,1)) # transpose to (channels, height, width)

    # color images
    if dims[1] == 3:
        # channel swap
        t.set_channel_swap('data', (2,1,0))

    if mean_file:
        # set mean pixel
        with open(mean_file,'rb') as infile:
            blob = caffe_pb2.BlobProto()
            blob.MergeFromString(infile.read())
            if blob.HasField('shape'):
                blob_dims = blob.shape
                assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
            elif blob.HasField('num') and blob.HasField('channels') and \
                    blob.HasField('height') and blob.HasField('width'):
                blob_dims = (blob.num, blob.channels, blob.height, blob.width)
            else:
                raise ValueError('blob does not provide shape or 4d dimensions')
            pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
            t.set_mean('data', pixel)

    return t
项目:WasIstDasFuer1Drone    作者:magnusja    | 项目源码 | 文件源码
def get_transformer(deploy_file, mean_file=None):
    """
    Returns an instance of caffe.io.Transformer

    Arguments:
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    mean_file -- path to a .binaryproto file (optional)
    """
    network = caffe_pb2.NetParameter()
    with open(deploy_file) as infile:
        text_format.Merge(infile.read(), network)

    if network.input_shape:
        dims = network.input_shape[0].dim
    else:
        dims = network.input_dim[:4]

    t = caffe.io.Transformer(
            inputs = {'data': dims}
            )
    t.set_transpose('data', (2,0,1)) # transpose to (channels, height, width)

    # color images
    if dims[1] == 3:
        # channel swap
        t.set_channel_swap('data', (2,1,0))

    if mean_file:
        # set mean pixel
        with open(mean_file,'rb') as infile:
            blob = caffe_pb2.BlobProto()
            blob.MergeFromString(infile.read())
            if blob.HasField('shape'):
                blob_dims = blob.shape
                assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
            elif blob.HasField('num') and blob.HasField('channels') and \
                    blob.HasField('height') and blob.HasField('width'):
                blob_dims = (blob.num, blob.channels, blob.height, blob.width)
            else:
                raise ValueError('blob does not provide shape or 4d dimensions')
            pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
            t.set_mean('data', pixel)

    return t
项目:WasIstDasFuer1Drone    作者:magnusja    | 项目源码 | 文件源码
def get_transformer(deploy_file, mean_file=None):
    """
    Returns an instance of caffe.io.Transformer

    Arguments:
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    mean_file -- path to a .binaryproto file (optional)
    """
    network = caffe_pb2.NetParameter()
    with open(deploy_file) as infile:
        text_format.Merge(infile.read(), network)

    if network.input_shape:
        dims = network.input_shape[0].dim
    else:
        dims = network.input_dim[:4]

    t = caffe.io.Transformer(
            inputs = {'data': dims}
            )
    t.set_transpose('data', (2,0,1)) # transpose to (channels, height, width)

    # color images
    if dims[1] == 3:
        # channel swap
        t.set_channel_swap('data', (2,1,0))

    if mean_file:
        # set mean pixel
        with open(mean_file,'rb') as infile:
            blob = caffe_pb2.BlobProto()
            blob.MergeFromString(infile.read())
            if blob.HasField('shape'):
                blob_dims = blob.shape
                assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
            elif blob.HasField('num') and blob.HasField('channels') and \
                    blob.HasField('height') and blob.HasField('width'):
                blob_dims = (blob.num, blob.channels, blob.height, blob.width)
            else:
                raise ValueError('blob does not provide shape or 4d dimensions')
            pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
            t.set_mean('data', pixel)

    return t