Python caffe.proto.caffe_pb2 模块,LabelMap() 实例源码

我们从Python开源项目中,提取了以下3个代码示例,用于说明如何使用caffe.proto.caffe_pb2.LabelMap()

项目:cv-api    作者:yasunorikudo    | 项目源码 | 文件源码
def __init__(self):
        # load MS COCO labels
        labelmap_file = os.path.join(CAFFE_ROOT, LABEL_MAP)
        file = open(labelmap_file, 'r')
        self._labelmap = caffe_pb2.LabelMap()
        text_format.Merge(str(file.read()), self._labelmap)

        model_def = os.path.join(CAFFE_ROOT, PROTO_TXT)
        model_weights = os.path.join(CAFFE_ROOT, CAFFE_MODEL)

        self._net = caffe.Net(model_def, model_weights, caffe.TEST)
        self._transformer = caffe.io.Transformer(
            {'data': self._net.blobs['data'].data.shape})
        self._transformer.set_transpose('data', (2, 0, 1))
        self._transformer.set_mean('data', np.array([104, 117, 123]))
        self._transformer.set_raw_scale('data', 255)
        self._transformer.set_channel_swap('data', (2, 1, 0))

        # set net to batch size of 1
        image_resize = IMAGE_SIZE
        self._net.blobs['data'].reshape(1, 3, image_resize, image_resize)
项目:Caffe-Python-Tutorial    作者:tostq    | 项目源码 | 文件源码
def labelmap(labelmap_file, label_info):
    labelmap = caffe_pb2.LabelMap()
    for i in range(len(label_info)):
        labelmapitem = caffe_pb2.LabelMapItem()
        labelmapitem.name = label_info[i]['name']
        labelmapitem.label = label_info[i]['label']
        labelmapitem.display_name = label_info[i]['display_name']
        labelmap.item.add().MergeFrom(labelmapitem)
    with open(labelmap_file, 'w') as f:
        f.write(str(labelmap))
项目:Caffe-Python-Tutorial    作者:tostq    | 项目源码 | 文件源码
def detection(img, net, transformer, labels_file):
    im = caffe.io.load_image(img)
    net.blobs['data'].data[...] = transformer.preprocess('data', im)

    start = time.clock()
    # ????
    net.forward()
    end = time.clock()
    print('detection time: %f s' % (end - start))

    # ????????
    file = open(labels_file, 'r')
    labelmap = caffe_pb2.LabelMap()
    text_format.Merge(str(file.read()), labelmap)

    loc = net.blobs['detection_out'].data[0][0]
    confidence_threshold = 0.5
    for l in range(len(loc)):
        if loc[l][2] >= confidence_threshold:
            xmin = int(loc[l][3] * im.shape[1])
            ymin = int(loc[l][4] * im.shape[0])
            xmax = int(loc[l][5] * im.shape[1])
            ymax = int(loc[l][6] * im.shape[0])
            img = np.zeros((512, 512, 3), np.uint8)  # ?????????
            cv2.rectangle(im, (xmin, ymin), (xmax, ymax), (55 / 255.0, 255 / 255.0, 155 / 255.0), 2)

            # ??????
            class_name = labelmap.item[int(loc[l][1])].display_name
            # text_font = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SCRIPT_SIMPLEX, 1, 1, 0, 3, 8)
            cv2.putText(im, class_name, (xmin, ymax), cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 1, (55, 255, 155), 2)

    # ????
    plt.imshow(im, 'brg')
    plt.show()

#CPU?GPU????