Python chainer.functions 模块,mean_absolute_error() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用chainer.functions.mean_absolute_error()

项目:chainer-cyclegan    作者:Aixile    | 项目源码 | 文件源码
def loss_func_rec_l1(x_out, t):
    return F.mean_absolute_error(x_out, t)
项目:chainer-began    作者:hvy    | 项目源码 | 文件源码
def pixel_wise_loss(self, x, y):
        if self.loss_norm == 1:
            return F.mean_absolute_error(x, y)
        elif self.loss_norm == 2:
            return F.mean_squared_error(x, y)
        else:
            raise ValueError('Invalid norm {}'.format(self.loss_norm))
项目:SketchSimplification    作者:La4La    | 项目源码 | 文件源码
def line_loss(self, x, t, k=3):
        #print(x.data.type)
        lx = x - F.max_pooling_2d(x, k, 1, 1)
        lt = t - F.max_pooling_2d(t, k, 1, 1)
        return 2 * F.mean_absolute_error(lx, lt)

        # 0 for dataset
        # 1 for fake
        # G_p_rough: output of Generator (paired rough sketch)
        # p_line: paired line art
项目:SketchSimplification    作者:La4La    | 项目源码 | 文件源码
def line_loss(self, x, t, k=3):
        #print(x.data.type)
        lx = x - F.max_pooling_2d(x, k, 1, 1)
        lt = t - F.max_pooling_2d(t, k, 1, 1)
        return 2 * F.mean_absolute_error(lx, lt)

        # 0 for dataset
        # 1 for fake
        # G_p_rough: output of Generator (paired rough sketch)
        # p_line: paired line art
项目:chainer-pix2pix    作者:wuhuikai    | 项目源码 | 文件源码
def loss_G(self, real_B, fake_B, fake_D):
        loss_l1 = F.mean_absolute_error(real_B, fake_B)
        chainer.report({'loss_l1': loss_l1}, self.G)

        batch_size, _, h, w = fake_D.shape
        loss_D = - F.sum(F.log(fake_D + self.eps)) / (batch_size*h*w)
        chainer.report({'loss_D': loss_D}, self.G)

        loss = loss_D + self.lambd*loss_l1
        chainer.report({'loss': loss}, self.G)

        return loss
项目:chainer-pix2pix    作者:pfnet-research    | 项目源码 | 文件源码
def loss_enc(self, enc, x_out, t_out, y_out, lam1=100, lam2=1):
        batchsize,_,w,h = y_out.data.shape
        loss_rec = lam1*(F.mean_absolute_error(x_out, t_out))
        loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h
        loss = loss_rec + loss_adv
        chainer.report({'loss': loss}, enc)
        return loss
项目:chainer-pix2pix    作者:pfnet-research    | 项目源码 | 文件源码
def loss_dec(self, dec, x_out, t_out, y_out, lam1=100, lam2=1):
        batchsize,_,w,h = y_out.data.shape
        loss_rec = lam1*(F.mean_absolute_error(x_out, t_out))
        loss_adv = lam2*F.sum(F.softplus(-y_out)) / batchsize / w / h
        loss = loss_rec + loss_adv
        chainer.report({'loss': loss}, dec)
        return loss
项目:chainer-examples    作者:nocotan    | 项目源码 | 文件源码
def __call__(self, x):
        h = x
        h = F.leaky_relu(self.c0(h))
        h = F.leaky_relu(self.c1(h))
        h = F.leaky_relu(self.c2(h))
        h = F.leaky_relu(self.c3(h))
        h = F.leaky_relu(self.l4(h))
        h = F.reshape(F.leaky_relu(self.l5(h)),
                      (x.data.shape[0], self.ch, 4, 4))
        h = F.leaky_relu(self.dc3(h))
        h = F.leaky_relu(self.dc2(h))
        h = F.leaky_relu(self.dc1(h))
        h = F.tanh(self.dc0(h))
        return F.mean_absolute_error(h, x)
项目:chainer_img2img_example    作者:taizan    | 项目源码 | 文件源码
def __init__(self, model, lossfunc=F.mean_absolute_error ):
        super(LossEval, self).__init__()
        self.lossfunc = lossfunc
        with self.init_scope():
            self.model = model
项目:chainer_img2img_example    作者:taizan    | 项目源码 | 文件源码
def loss_cnn(self, cnn, x_out, dst, dis_out, lam1=100, lam2=1):
        loss_rec = lam1 * ( F.mean_absolute_error(x_out, dst) )
        batchsize,_,w,h = dis_out.data.shape
        loss_adv = lam2 * F.sum( F.softplus(-dis_out) ) / batchsize / w / h

        loss = loss_rec + loss_adv 
        chainer.report({'loss': loss,"loss_rec":loss_rec, 'loss_adv': loss_adv }, cnn)        

        return loss