Python chainer.functions 模块,identity() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用chainer.functions.identity()

项目:ROCStory_skipthought_baseline    作者:soskek    | 项目源码 | 文件源码
def __init__(self, args):
        super(LSTM, self).__init__(
            # RNN
            LSTM=L.LSTM(args.n_in_units, args.n_units),
            #W_predict=L.Linear(args.n_units, args.n_units),
            W_candidate=L.Linear(args.n_in_units, args.n_units),
        )

        #self.act1 = F.tanh
        self.act1 = F.identity

        self.args = args
        self.n_in_units = args.n_in_units
        self.n_units = args.n_units
        self.dropout_ratio = args.d_ratio
        self.margin = args.margin

        self.initialize_parameters()
项目:kaggle-dsg-qualification    作者:Ignotus    | 项目源码 | 文件源码
def __init__(self, in_channels, out_channels, ksize=3, fiber_map='id',
                 stride=1, pad=1, wscale=1, bias=0, nobias=False, use_cudnn=True, initialW=None, initial_bias=None):

        assert ksize % 2 == 1

        assert pad == (ksize - 1) // 2

        super(ResBlock, self).__init__(
            bn1=L.BatchNormalization(in_channels),
            conv1=L.Convolution2D(in_channels, out_channels, ksize, stride, pad, wscale),
            bn2=L.BatchNormalization(out_channels),
            conv2=L.Convolution2D(out_channels, out_channels, ksize, 1, pad, wscale),
        )
        if fiber_map == 'id':
            assert in_channels == out_channels
            self.fiber_map = F.identity
        elif fiber_map == 'linear':
            self.add_link('fiber_map', L.Convolution2D(in_channels, out_channels, 1, 2, 0, wscale))
        else:
            raise ValueError('Unimplemented fiber map {}'.format(fiber_map))
项目:kaggle-dsg-qualification    作者:Ignotus    | 项目源码 | 文件源码
def __init__(self, in_channels, out_channels, ksize=3, fiber_map='id',
                 stride=1, pad=1, wscale=1, bias=0, nobias=False, use_cudnn=True, initialW=None, initial_bias=None):

        assert ksize % 2 == 1

        assert pad == (ksize - 1) // 2

        super(ResBlock, self).__init__(
            bn1=L.BatchNormalization(in_channels),
            conv1=L.Convolution2D(in_channels, out_channels, ksize, stride, pad, wscale),
            bn2=L.BatchNormalization(out_channels),
            conv2=L.Convolution2D(out_channels, out_channels, ksize, 1, pad, wscale),
        )
        if fiber_map == 'id':
            assert in_channels == out_channels
            self.fiber_map = F.identity
        elif fiber_map == 'linear':
            self.add_link('fiber_map', L.Convolution2D(in_channels, out_channels, 1, 2, 0, wscale))
        else:
            raise ValueError('Unimplemented fiber map {}'.format(fiber_map))
项目:gconv_experiments    作者:tscohen    | 项目源码 | 文件源码
def __init__(self, in_channels, out_channels, ksize=3, fiber_map='id', conv_link=L.Convolution2D,
                 stride=1, pad=1, wscale=1):

        assert ksize % 2 == 1

        if not pad == (ksize - 1) // 2:
            raise NotImplementedError()

        super(ResBlock2D, self).__init__(
            bn1=L.BatchNormalization(in_channels),
            conv1=conv_link(
                in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, wscale=wscale),
            bn2=L.BatchNormalization(out_channels),
            conv2=conv_link(
                in_channels=out_channels, out_channels=out_channels, ksize=ksize, stride=1, pad=pad, wscale=wscale)
        )

        if fiber_map == 'id':
            if not in_channels == out_channels:
                raise ValueError('fiber_map cannot be identity when channel dimension is changed.')
            self.fiber_map = F.identity
        elif fiber_map == 'zero_pad':
            raise NotImplementedError()
        elif fiber_map == 'linear':
            fiber_map = conv_link(
                in_channels=in_channels, out_channels=out_channels, ksize=1, stride=stride, pad=0, wscale=wscale)
            self.add_link('fiber_map', fiber_map)
        else:
            raise ValueError('Unknown fiber_map: ' + str(type))
项目:dgm    作者:ashwindcruz    | 项目源码 | 文件源码
def house_transform(self,z):
        vec_t = self.qh_vec_0

        for i in range(self.num_trans):
            vec_t = F.identity(self.qlin_h_vec_t(vec_t))
            vec_t_product = F.matmul(vec_t, vec_t, transb=True)
            vec_t_norm_sqr = F.tile(F.sum(F.square(vec_t)), (z.shape[0], z.shape[1]))
            z = z - 2*F.matmul(vec_t_product,  z)/vec_t_norm_sqr
        return z
项目:dgm    作者:ashwindcruz    | 项目源码 | 文件源码
def house_transform(self,z):
        vec_t = self.qh_vec_0

        for i in range(self.num_trans):
            vec_t = F.identity(self.qlin_h_vec_t(vec_t))
            vec_t_product = F.matmul(vec_t, vec_t, transb=True)
            vec_t_norm_sqr = F.tile(F.sum(F.square(vec_t)), (z.shape[0], z.shape[1]))
            z = z - 2*F.matmul(vec_t_product,  z)/vec_t_norm_sqr
        return z
项目:dgm    作者:ashwindcruz    | 项目源码 | 文件源码
def house_transform(self,z):
        vec_t = self.qh_vec_0

        for i in range(self.num_trans):
            vec_t = F.identity(self.qlin_h_vec_t(vec_t))
            vec_t_product = F.matmul(vec_t, vec_t, transb=True)
            vec_t_norm_sqr = F.tile(F.sum(F.square(vec_t)), (z.shape[0], z.shape[1]))
            z = z - 2*F.matmul(vec_t_product,  z)/vec_t_norm_sqr
        return z
项目:chainer-deconv    作者:germanRos    | 项目源码 | 文件源码
def test_backward(self):
        x = chainer.Variable(numpy.array([1]), name='x')
        y1 = F.identity(x)
        y1.name = 'y1'
        y2 = F.identity(x)
        y2.name = 'y2'
        z = y1 + y2
        z.name = 'z'

        z.grad = numpy.array([1])
        z.backward(retain_grad=True)

        self.assertEqual(y1.grad[0], 1)
        self.assertEqual(y2.grad[0], 1)
        self.assertEqual(x.grad[0], 2)
项目:masalachai    作者:DaikiShimada    | 项目源码 | 文件源码
def __init__(self, predictor, lossfun=identity,
                 accuracyfun=accuracy, **links):
        super(Model, self).__init__(predictor=predictor, **links)
        self.lossfun = lossfun
        self.accuracyfun = accuracyfun
        self.y = None
        self.loss = None
        self.accuracy = None
项目:deep-learning-for-human-part-discovery-in-images    作者:shiba24    | 项目源码 | 文件源码
def crop(inputs, outsize, offset):
        x = F.identity(inputs)
        crop_axis = [i!=j for i, j in zip(inputs.data.shape, outsize)]
        i = 0
        for index, tf in enumerate(crop_axis):
            if tf:
                _, x, _ = F.split_axis(x, [offset[i], offset[i] + outsize[index]], index)
                i += 1
        return x