我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用chainer.functions.flatten()。
def term_bias(self, bs, train=True): """ Compute overall bias and broadcast to shape of batchsize """ shape = (bs, 1,) # Bias is drawn from a Gaussian with given mu and log variance bs_mu = F.broadcast_to(self.bias_mu.b, shape) bs_lv = F.broadcast_to(self.bias_lv.b, shape) bias = F.flatten(F.gaussian(bs_mu, bs_lv)) # Add a very negative log variance so we're sampling # from a very narrow distribution about the mean. # Useful for validation dataset when we want to only guess # the mean. if not train: bs_lv += self.lv_floor # Compute prior on the bias, so compute the KL div # from the KL(N(mu_bias, var_bias) | N(0, 1)) kld = F.gaussian_kl_divergence(self.bias_mu.b, self.bias_lv.b) return bias, kld
def _elementwise_softmax_cross_entropy(x, t): assert x.shape[:-1] == t.shape shape = t.shape x = F.reshape(x, (-1, x.shape[-1])) t = F.flatten(t) return F.reshape( F.softmax_cross_entropy(x, t, reduce='no'), shape)
def image_to_feature(self, image_np): """ ???RGB, (3, 100, 100)?numpy.array???????????????????? """ _train = chainer.config.train chainer.config.train = False x = chainer.Variable(numpy.array([image_np], dtype=numpy.float32)) feature_vector = F.flatten(self.fe.reduct(x)).data chainer.config.train = _train return feature_vector
def forward(self, ws, ss, ps, ls, dep_ts=None): batchsize, slen = ws.shape xp = chainer.cuda.get_array_module(ws[0]) wss = self.emb_word(ws) sss = F.reshape(self.emb_suf(ss), (batchsize, slen, 4 * self.afix_dim)) pss = F.reshape(self.emb_prf(ps), (batchsize, slen, 4 * self.afix_dim)) ins = F.dropout(F.concat([wss, sss, pss], 2), self.dropout_ratio, train=self.train) xs_f = F.transpose(ins, (1, 0, 2)) xs_b = xs_f[::-1] cx_f, hx_f, cx_b, hx_b = self._init_state(xp, batchsize) _, _, hs_f = self.lstm_f(hx_f, cx_f, xs_f, train=self.train) _, _, hs_b = self.lstm_b(hx_b, cx_b, xs_b, train=self.train) # (batch, length, hidden_dim) hs = F.transpose(F.concat([hs_f, hs_b[::-1]], 2), (1, 0, 2)) dep_ys = self.biaffine_arc( F.elu(F.dropout(self.arc_dep(hs), 0.32, train=self.train)), F.elu(F.dropout(self.arc_head(hs), 0.32, train=self.train))) if dep_ts is not None and random.random >= 0.5: heads = dep_ts else: heads = F.flatten(F.argmax(dep_ys, axis=2)) + \ xp.repeat(xp.arange(0, batchsize * slen, slen), slen) hs = F.reshape(hs, (batchsize * slen, -1)) heads = F.permutate( F.elu(F.dropout( self.rel_head(hs), 0.32, train=self.train)), heads) childs = F.elu(F.dropout(self.rel_dep(hs), 0.32, train=self.train)) cat_ys = self.biaffine_tag(childs, heads) dep_ys = F.split_axis(dep_ys, batchsize, 0) if batchsize > 1 else [dep_ys] dep_ys = [F.reshape(v, v.shape[1:])[:l, :l] for v, l in zip(dep_ys, ls)] cat_ys = F.split_axis(cat_ys, batchsize, 0) if batchsize > 1 else [cat_ys] cat_ys = [v[:l] for v, l in zip(cat_ys, ls)] return cat_ys, dep_ys