Python chainer.links 模块,Inception() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用chainer.links.Inception()

项目:chainer-deconv    作者:germanRos    | 项目源码 | 文件源码
def __init__(self):
        super(GoogLeNet, self).__init__(
            conv1=L.Convolution2D(3,  64, 7, stride=2, pad=3),
            conv2_reduce=L.Convolution2D(64,  64, 1),
            conv2=L.Convolution2D(64, 192, 3, stride=1, pad=1),
            inc3a=L.Inception(192,  64,  96, 128, 16,  32,  32),
            inc3b=L.Inception(256, 128, 128, 192, 32,  96,  64),
            inc4a=L.Inception(480, 192,  96, 208, 16,  48,  64),
            inc4b=L.Inception(512, 160, 112, 224, 24,  64,  64),
            inc4c=L.Inception(512, 128, 128, 256, 24,  64,  64),
            inc4d=L.Inception(512, 112, 144, 288, 32,  64,  64),
            inc4e=L.Inception(528, 256, 160, 320, 32, 128, 128),
            inc5a=L.Inception(832, 256, 160, 320, 32, 128, 128),
            inc5b=L.Inception(832, 384, 192, 384, 48, 128, 128),
            loss3_fc=L.Linear(1024, 1000),

            loss1_conv=L.Convolution2D(512, 128, 1),
            loss1_fc1=L.Linear(4 * 4 * 128, 1024),
            loss1_fc2=L.Linear(1024, 1000),

            loss2_conv=L.Convolution2D(528, 128, 1),
            loss2_fc1=L.Linear(4 * 4 * 128, 1024),
            loss2_fc2=L.Linear(1024, 1000)
        )
        self.train = True
项目:deel    作者:uei    | 项目源码 | 文件源码
def __init__(self):
        super(GoogLeNet, self).__init__(
            conv1=L.Convolution2D(3,  64, 7, stride=2, pad=3),
            conv2_reduce=L.Convolution2D(64,  64, 1),
            conv2=L.Convolution2D(64, 192, 3, stride=1, pad=1),
            inc3a=L.Inception(192,  64,  96, 128, 16,  32,  32),
            inc3b=L.Inception(256, 128, 128, 192, 32,  96,  64),
            inc4a=L.Inception(480, 192,  96, 208, 16,  48,  64),
            inc4b=L.Inception(512, 160, 112, 224, 24,  64,  64),
            inc4c=L.Inception(512, 128, 128, 256, 24,  64,  64),
            inc4d=L.Inception(512, 112, 144, 288, 32,  64,  64),
            inc4e=L.Inception(528, 256, 160, 320, 32, 128, 128),
            inc5a=L.Inception(832, 256, 160, 320, 32, 128, 128),
            inc5b=L.Inception(832, 384, 192, 384, 48, 128, 128),
            loss3_fc=L.Linear(1024, 1000),

            loss1_conv=L.Convolution2D(512, 128, 1),
            loss1_fc1=L.Linear(4 * 4 * 128, 1024),
            loss1_fc2=L.Linear(1024, 1000),

            loss2_conv=L.Convolution2D(528, 128, 1),
            loss2_fc1=L.Linear(4 * 4 * 128, 1024),
            loss2_fc2=L.Linear(1024, 1000)
        )
        self.train = True
项目:chainermn    作者:chainer    | 项目源码 | 文件源码
def __init__(self):
        super(GoogLeNet, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(None, 64, 7, stride=2, pad=3)
            self.conv2_reduce = L.Convolution2D(None, 64, 1)
            self.conv2 = L.Convolution2D(None, 192, 3, stride=1, pad=1)
            self.inc3a = L.Inception(None, 64, 96, 128, 16, 32, 32)
            self.inc3b = L.Inception(None, 128, 128, 192, 32, 96, 64)
            self.inc4a = L.Inception(None, 192, 96, 208, 16, 48, 64)
            self.inc4b = L.Inception(None, 160, 112, 224, 24, 64, 64)
            self.inc4c = L.Inception(None, 128, 128, 256, 24, 64, 64)
            self.inc4d = L.Inception(None, 112, 144, 288, 32, 64, 64)
            self.inc4e = L.Inception(None, 256, 160, 320, 32, 128, 128)
            self.inc5a = L.Inception(None, 256, 160, 320, 32, 128, 128)
            self.inc5b = L.Inception(None, 384, 192, 384, 48, 128, 128)
            self.loss3_fc = L.Linear(None, 1000)

            self.loss1_conv = L.Convolution2D(None, 128, 1)
            self.loss1_fc1 = L.Linear(None, 1024)
            self.loss1_fc2 = L.Linear(None, 1000)

            self.loss2_conv = L.Convolution2D(None, 128, 1)
            self.loss2_fc1 = L.Linear(None, 1024)
            self.loss2_fc2 = L.Linear(None, 1000)
项目:chainermn    作者:chainer    | 项目源码 | 文件源码
def __init__(self):
        super(GoogLeNet, self).__init__(
            conv1=L.Convolution2D(None,  64, 7, stride=2, pad=3),
            conv2_reduce=L.Convolution2D(None,  64, 1),
            conv2=L.Convolution2D(None, 192, 3, stride=1, pad=1),
            inc3a=L.Inception(None,  64,  96, 128, 16,  32,  32),
            inc3b=L.Inception(None, 128, 128, 192, 32,  96,  64),
            inc4a=L.Inception(None, 192,  96, 208, 16,  48,  64),
            inc4b=L.Inception(None, 160, 112, 224, 24,  64,  64),
            inc4c=L.Inception(None, 128, 128, 256, 24,  64,  64),
            inc4d=L.Inception(None, 112, 144, 288, 32,  64,  64),
            inc4e=L.Inception(None, 256, 160, 320, 32, 128, 128),
            inc5a=L.Inception(None, 256, 160, 320, 32, 128, 128),
            inc5b=L.Inception(None, 384, 192, 384, 48, 128, 128),
            loss3_fc=L.Linear(None, 1000),

            loss1_conv=L.Convolution2D(None, 128, 1),
            loss1_fc1=L.Linear(None, 1024),
            loss1_fc2=L.Linear(None, 1000),

            loss2_conv=L.Convolution2D(None, 128, 1),
            loss2_fc1=L.Linear(None, 1024),
            loss2_fc2=L.Linear(None, 1000)
        )
        self.train = True
项目:chainer-examples    作者:nocotan    | 项目源码 | 文件源码
def __init__(self):
        super(GoogleNet, self).__init__()
        with self.init_scope():
            self.conv1=L.Convolution2D(None, 64, 7, stride=2, pad=3)
            self.conv2_reduce=L.Convolution2D(None, 64, 1)
            self.conv2=L.Convolution2D(None, 192, 3, stride=1, pad=1)
            self.inc3a=L.Inception(None, 64, 96, 128, 16, 32, 32)
            self.inc3b=L.Inception(None, 128, 128, 192, 32, 96, 64)
            self.inc4a=L.Inception(None, 192, 96, 208, 16, 48, 64)
            self.inc4b=L.Inception(None, 160, 112, 224, 24, 64, 64)
            self.inc4c=L.Inception(None, 128, 128, 256, 24, 64, 64)
            self.inc4d = L.Inception(None, 112, 144, 288, 32,  64,  64)
            self.inc4e = L.Inception(None, 256, 160, 320, 32, 128, 128)
            self.inc5a = L.Inception(None, 256, 160, 320, 32, 128, 128)
            self.inc5b = L.Inception(None, 384, 192, 384, 48, 128, 128)
            self.loss3_fc = L.Linear(None, 1000)

            self.loss1_conv = L.Convolution2D(None, 128, 1)
            self.loss1_fc1 = L.Linear(None, 1024)
            self.loss1_fc2 = L.Linear(None, 1000)

            self.loss2_conv = L.Convolution2D(None, 128, 1)
            self.loss2_fc1 = L.Linear(None, 1024)
            self.loss2_fc2 = L.Linear(None, 1000)
项目:chainer-DPNs    作者:oyam    | 项目源码 | 文件源码
def __init__(self):
        super(GoogLeNet, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(None,  64, 7, stride=2, pad=3)
            self.conv2_reduce = L.Convolution2D(None,  64, 1)
            self.conv2 = L.Convolution2D(None, 192, 3, stride=1, pad=1)
            self.inc3a = L.Inception(None,  64,  96, 128, 16,  32,  32)
            self.inc3b = L.Inception(None, 128, 128, 192, 32,  96,  64)
            self.inc4a = L.Inception(None, 192,  96, 208, 16,  48,  64)
            self.inc4b = L.Inception(None, 160, 112, 224, 24,  64,  64)
            self.inc4c = L.Inception(None, 128, 128, 256, 24,  64,  64)
            self.inc4d = L.Inception(None, 112, 144, 288, 32,  64,  64)
            self.inc4e = L.Inception(None, 256, 160, 320, 32, 128, 128)
            self.inc5a = L.Inception(None, 256, 160, 320, 32, 128, 128)
            self.inc5b = L.Inception(None, 384, 192, 384, 48, 128, 128)
            self.loss3_fc = L.Linear(None, 1000)

            self.loss1_conv = L.Convolution2D(None, 128, 1)
            self.loss1_fc1 = L.Linear(None, 1024)
            self.loss1_fc2 = L.Linear(None, 1000)

            self.loss2_conv = L.Convolution2D(None, 128, 1)
            self.loss2_fc1 = L.Linear(None, 1024)
            self.loss2_fc2 = L.Linear(None, 1000)
项目:chainer-deconv    作者:germanRos    | 项目源码 | 文件源码
def setUp(self):
        self.x = numpy.random.uniform(
            -1, 1, (10, self.in_channels, 5, 5)
        ).astype(numpy.float32)
        out = self.out1 + self.out3 + self.out5 + self.proj_pool
        self.gy = numpy.random.uniform(
            -1, 1, (10, out, 5, 5)).astype(numpy.float32)
        self.l = links.Inception(
            self.in_channels, self.out1, self.proj3, self.out3,
            self.proj5, self.out5, self.proj_pool)