我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用chainer.serializers.load_npz()。
def __init__(self, actions, epsilon=1, n_history=4, on_gpu=False, model_path="", load_if_exist=True): self.actions = actions self.epsilon = epsilon self.q = Q(n_history, len(actions), on_gpu) self._state = [] self._observations = [ np.zeros((self.q.SIZE, self.q.SIZE), np.float32), np.zeros((self.q.SIZE, self.q.SIZE), np.float32) ] # now & pre self.last_action = 0 self.model_path = model_path if model_path else os.path.join(os.path.dirname(__file__), "./store") if not os.path.exists(self.model_path): print("make directory to store model at {0}".format(self.model_path)) os.mkdir(self.model_path) else: models = self.get_model_files() if load_if_exist and len(models) > 0: print("load model file {0}.".format(models[-1])) serializers.load_npz(os.path.join(self.model_path, models[-1]), self.q) # use latest model
def __init__(self, model_path, config): # hyper parameters self.n_boxes = 5 self.config = config self.labels = config['categories'] self.n_classes = len(self.labels) self.detection_thresh = config['confidence'] self.iou_thresh = config['iou'] anchors = config['anchors'] # load model print('loading model...') yolov2 = YOLOv2(n_classes=self.n_classes, n_boxes=self.n_boxes) serializers.load_npz(model_path, yolov2) model = YOLOv2Predictor(yolov2) model.init_anchor(anchors) model.predictor.finetune = False self.model = model
def test(args,encdec,model_name,categ_arr=[],predictFlag=False): serializers.load_npz(model_name,encdec) if args.gpu>=0: import cupy as cp global xp;xp=cp encdec.to_gpu() encdec.setBatchSize(args.batchsize) if "cvae" in model_name: for categ in categ_arr: print("categ:{}".format(encdec.categ_vocab.itos(categ))) if predictFlag: encdec.predict(args.batchsize,tag=categ,randFlag=False) elif predictFlag: encdec.predict(args.batchsize,randFlag=False) return encdec
def loadModel(self,model_name_base,args): first_e = 0 model_name = "" for e in range(args.epoch): model_name_tmp = model_name_base.format(args.dataname, args.dataname, e,args.n_latent) if os.path.exists(model_name_tmp): model_name = model_name_tmp self.setEpochNow(e + 1) if os.path.exists(model_name): print(model_name) # serializers.load_npz(model_name, encdec) serializers.load_npz(model_name, self) print("loaded_{}".format(model_name)) first_e = self.epoch_now else: print("loadW2V") if os.path.exists(args.premodel): self.loadW(args.premodel) else: print("wordvec model doesnt exists.") return first_e
def loadInfo(self, folder, model, state, smanager): if(not os.path.exists(folder)): return (model, state, 1) list_files = [] model_name = model.getName() for file in os.listdir(folder): if(file.startswith(model_name) and file.endswith(".state")): list_files.append(file) if(len(list_files) > 0): sorted_list = self.natural_sort(list_files) fname_state = sorted_list[-1] bname = re.split('\.',fname_state)[0] fname_model = bname + '.model' fname_stats = bname + '.stats' epoch = int(re.split('_|\.', bname)[-1]) + 1 serializers.load_npz(folder + '/' + fname_state, state) serializers.load_npz(folder + '/' + fname_model, model) smanager.load(folder + '/' + fname_stats) else: epoch = 1 # no prev. models... return (model, state, epoch)
def __init__(self,modelpath='misc/VGG16_faster_rcnn_final.model', mean=[102.9801, 115.9465, 122.7717], in_size=224): super(FasterRCNN,self).__init__('FasterRCNN',in_size) self.func = FRCNN(Deel.gpu) self.func.train=False serializers.load_npz('misc/VGG16_faster_rcnn_final.model', self.func) ImageNet.mean_image = np.ndarray((3, 256, 256), dtype=np.float32) ImageNet.mean_image[0] = mean[0] ImageNet.mean_image[1] = mean[1] ImageNet.mean_image[2] = mean[2] ImageNet.in_size = in_size self.labels = CLASSES self.batchsize = 1 xp = Deel.xp self.x_batch = xp.ndarray((self.batchsize, 3, self.in_size, self.in_size), dtype=np.float32) if Deel.gpu >=0: self.func = self.func.to_gpu(Deel.gpu) self.optimizer = optimizers.Adam() self.optimizer.setup(self.func)
def predict(limit): _limit = limit if limit > 0 else 5 td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, mean_image_file=MEAN_IMAGE_FILE, image_property=IMAGE_PROP) label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE) model = alex.Alex(len(label_def)) serializers.load_npz(MODEL_FILE, model) i = 0 for arr, im in td.generate(): x = np.ndarray((1,) + arr.shape, arr.dtype) x[0] = arr x = chainer.Variable(np.asarray(x), volatile="on") y = model.predict(x) p = np.argmax(y.data) print("predict {0}, actual {1}".format(label_def[p], label_def[im.label])) im.image.show() i += 1 if i >= _limit: break
def test(self, cgp, model_file, comp_graph='comp_graph.dot', batchsize=256): chainer.cuda.get_device(0).use() # Make a specified GPU current model = CGP2CNN(cgp, self.n_class) print('\tLoad model from', model_file) serializers.load_npz(model_file, model) model.to_gpu(0) test_accuracy, test_loss = self.__test(model, batchsize) print('\tparamNum={}'.format(model.param_num)) print('\ttest mean loss={}, test accuracy={}'.format(test_loss / self.test_data_num, test_accuracy / self.test_data_num)) if comp_graph is not None: with open(comp_graph, 'w') as o: g = computational_graph.build_computational_graph((model.loss,)) o.write(g.dump()) del g print('\tCNN graph generated ({}).'.format(comp_graph)) return test_accuracy, test_loss
def main(): model = voxelchain.VoxelChain() serializers.load_npz('result/VoxelChain.model',model) use_model(model)
def main(): model = voxelchain.VoxelChain() serializers.load_npz('result/VoxelChain.model',model) conv1(model) conv2(model) create_graph()
def main(): args = parse_args() print("loading classifier model...") input_model = YOLOv2Classifier(args.input_class) serializers.load_npz(args.input_path, input_model) model = YOLOv2(args.output_class, args.box) copy_conv_layer(input_model, model, partial_layer) copy_bias_layer(input_model, model, partial_layer) copy_bn_layer(input_model, model, partial_layer) print("saving model to %s" % (args.output_path)) serializers.save_npz(args.output_path, model)
def load_npz_no_strict(filename, obj): try: serializers.load_npz(filename, obj) except KeyError as e: warnings.warn(repr(e)) with numpy.load(filename) as f: d = serializers.NpzDeserializer(f, strict=False) d.load(obj)
def get_model(gpu): model = FasterRCNN(gpu) model.train = False serializers.load_npz('data/VGG16_faster_rcnn_final.model', model) return model
def model_init(self): load_model = self.load_model model = self.model gpu = self.gpu if load_model is None: print('ReLU weight initialization') model.weight_initialization() else: print('loading ' + self.load_model) serializers.load_npz(load_model, model) model.check_gpu(gpu)
def model_init(model, load_model): if load_model is None: print('Weight initialization') model.weight_initialization() else: print('loading {}'.format(load_model)) serializers.load_npz(load_model, model)
def load_model(self, path=''): serializers.load_npz(path, self)
def read_lstm_model(self, params, train): assert train == False # reading a model to continue training is currently not supported words_file = params['config_path'] + params['words_file'] model_file = params['config_path'] + params['model_file'] unit = int(params['unit']) deep = (params['deep'] == 'yes') drop_ratio = float(params['drop_ratio']) #read and normalize target word embeddings w, word2index, index2word = self.read_words(words_file) s = numpy.sqrt((w * w).sum(1)) s[s==0.] = 1. w /= s.reshape((s.shape[0], 1)) # normalize context_word_units = unit lstm_hidden_units = IN_TO_OUT_UNITS_RATIO*unit target_word_units = IN_TO_OUT_UNITS_RATIO*unit cs = [1 for _ in range(len(word2index))] # dummy word counts - not used for eval loss_func = L.NegativeSampling(target_word_units, cs, NEGATIVE_SAMPLING_NUM) # dummy loss func - not used for eval model = BiLstmContext(deep, self.gpu, word2index, context_word_units, lstm_hidden_units, target_word_units, loss_func, train, drop_ratio) S.load_npz(model_file, model) return w, word2index, index2word, model
def __init__(self, Nj, gpu, model_file, filename): # initialize model to estimate. self.model = AlexNet(Nj) self.gpu = gpu serializers.load_npz(model_file, self.model) # prepare gpu. if self.gpu >= 0: chainer.cuda.get_device(gpu).use() self.model.to_gpu() # load dataset to estimate. self.dataset = PoseDataset(filename)
def __init__(self, Nj, gpu, model_file, filename): # initialize model to estimate. self.model = AlexNet(Nj, use_visibility=True) self.gpu = gpu serializers.load_npz(model_file, self.model) # prepare gpu. if self.gpu >= 0: chainer.cuda.get_device(gpu).use() self.model.to_gpu() # load dataset to estimate. self.dataset = PoseDataset(filename)
def load(load_dir, epoch): with (load_dir/meta_name).open('rb') as f: storage = Storage(*np.load(f)[0]) serializers.load_npz( str(load_dir/model_name(epoch)), storage.model ) serializers.load_npz( str(load_dir/optimizer_name(epoch)), storage.optimizer ) return storage
def load_chain_model(self, **kwargs): name = self.get_name(**kwargs) path = '{}/{}'.format(self.folder,name) epoch = int(kwargs.get("nepochs",2)) fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch) chain, model = self.setup_chain_model(**kwargs) S.load_npz(fn, chain) return chain, model
def get_model(gpu): model = FasterRCNN(gpu) model.train = False serializers.load_npz('misc/VGG16_faster_rcnn_final.model', model) return model
def main(): parser = argparse.ArgumentParser(description='pix2pix --- GAN for Image to Image translation') parser.add_argument('--gpu', type=int, default=0, help='GPU ID (negative value indicates CPU)') parser.add_argument('--load_size', type=int, default=256, help='Scale image to load_size') parser.add_argument('--g_filter_num', type=int, default=64, help="# of filters in G's 1st conv layer") parser.add_argument('--d_filter_num', type=int, default=64, help="# of filters in D's 1st conv layer") parser.add_argument('--output_channel', type=int, default=3, help='# of output image channels') parser.add_argument('--n_layers', type=int, default=3, help='# of hidden layers in D') parser.add_argument('--list_path', default='list/val_list.txt', help='Path for test list') parser.add_argument('--out', default='result/test', help='Directory to output the result') parser.add_argument('--G_path', default='result/G.npz', help='Path for pretrained G') args = parser.parse_args() if not os.path.isdir(args.out): os.makedirs(args.out) # Set up GAN G G = Generator(args.g_filter_num, args.output_channel) serializers.load_npz(args.G_path, G) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() # Make a specified GPU current G.to_gpu() # Copy the model to the GPU with open(args.list_path) as f: imgs = f.readlines() total = len(imgs) for idx, img_path in enumerate(imgs): print('{}/{} ...'.format(idx+1, total)) img_path = img_path.strip().split(' ')[-1] img = cv2.imread(img_path, cv2.IMREAD_COLOR)[:, :, ::-1] h, w, _ = img.shape img = np.asarray(Image.fromarray(img).resize((args.load_size, args.load_size), resample=Image.NEAREST), dtype=np.float32) img = np.transpose(img, (2, 0, 1)) A = data_process([img], device=args.gpu, volatile='on') B = np.squeeze(output2img(G(A, test=True, dropout=False))) Image.fromarray(B).resize((w, h), resample=Image.BILINEAR).save(os.path.join(args.out, os.path.basename(img_path).replace('gtFine_labelIds', 'leftImg8bit')))
def main(args): # get datasets source_train, source_test = chainer.datasets.get_svhn() target_train, target_test = chainer.datasets.get_mnist(ndim=3, rgb_format=True) source = source_train, source_test # resize mnist to 32x32 def transform(in_data): img, label = in_data img = resize(img, (32, 32)) return img, label target_train = TransformDataset(target_train, transform) target_test = TransformDataset(target_test, transform) target = target_train, target_test # load pretrained source, or perform pretraining pretrained = os.path.join(args.output, args.pretrained_source) if not os.path.isfile(pretrained): source_cnn = pretrain_source_cnn(source, args) else: source_cnn = Loss(num_classes=10) serializers.load_npz(pretrained, source_cnn) # how well does this perform on target domain? test_pretrained_on_target(source_cnn, target, args) # initialize the target cnn (do not use source_cnn.copy) target_cnn = Loss(num_classes=10) # copy parameters from source cnn to target cnn target_cnn.copyparams(source_cnn) train_target_cnn(source, target, source_cnn, target_cnn, args)
def main(): parser = argparse.ArgumentParser(description='Regression predict') parser.add_argument('--modelpath', '-m', default='result/mlp.model', help='Model path to be loaded') parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)') parser.add_argument('--unit', '-u', type=int, default=50, help='Number of units') args = parser.parse_args() batchsize = 128 # Load dataset data, target = load_data() X = data.reshape((-1, 1)).astype(np.float32) y = target.reshape((-1, 1)).astype(np.float32) # Load trained model model = SklearnWrapperRegressor(MLP(args.unit, 1), device=args.gpu) serializers.load_npz(args.modelpath, model) # --- Example 1. Predict all test data --- outputs = model.predict(X, batchsize=batchsize, retain_inputs=False,) # --- Plot result --- plt.figure() plt.scatter(X, y, label='actual') plt.plot(X, outputs, label='predict', color='red') plt.legend() plt.show() plt.savefig('predict.png')
def load(self, name): serializers.load_npz(name+".model", self.dqn.model) serializers.load_npz(name+".optimizer", self.dqn.optimizer)
def main(args): # load config file and obtain embed dimension and hidden dimension with open(args.config_path, 'r') as fi: config = json.load(fi) embed_dim = config["dim"] hidden_dim = config["unit"] print("Embedding Dimension: {}\nHidden Dimension: {}\n".format(embed_dim, hidden_dim), file=sys.stderr) # load data dp = DataProcessor(data_path=config["data"], test_run=False) dp.prepare_dataset() # create model vocab = dp.vocab model = RecNetClassifier(QRNNLangModel(n_vocab=len(vocab), embed_dim=embed_dim, out_size=hidden_dim)) # load parameters print("loading paramters to model...", end='', file=sys.stderr, flush=True) S.load_npz(filename=args.model_path, obj=model) print("done.", file=sys.stderr, flush=True) # create iterators from loaded data bprop_len = config["bproplen"] test_data = dp.test_data test_iter = ParallelSequentialIterator(test_data, 1, repeat=False, bprop_len=bprop_len) # evaluate the model print('testing...', end='', file=sys.stderr, flush=True) model.predictor.reset_state() model.predictor.train = False evaluator = extensions.Evaluator(test_iter, model, converter=convert) result = evaluator() print('done.\n', file=sys.stderr, flush=True) print('Perplexity: {}'.format(np.exp(float(result['main/loss']))), end='', file=sys.stderr, flush=True)
def __init__(self): self._model = FastStyleNet() serializers.load_npz('composition.model', self._model) cuda.get_device(0).use() self._model.to_gpu()
def load_model(self, model): if not os.path.exists(self.model_path): raise Exception("model file directory does not exist.") suffix = ".model" keyword = model.__class__.__name__.lower() candidates = [] for f in os.listdir(self.model_path): if keyword in f and f.endswith(suffix): candidates.append(f) candidates.sort() latest = candidates[-1] #print("targets {}, pick up {}.".format(candidates, latest)) model_file = os.path.join(self.model_path, latest) serializers.load_npz(model_file, model)
def _transform(in_image,loaded,m_path): if m_path == 'none': return in_image if not loaded: serializers.load_npz(m_path, model) if RUN_ON_GPU: cuda.get_device(0).use() #assuming only one core model.to_gpu() print "loaded" xp = np if not RUN_ON_GPU else cuda.cupy image = xp.asarray(in_image, dtype=xp.float32).transpose(2, 0, 1) image = image.reshape((1,) + image.shape) image -= 120 x = Variable(image) y = model(x) result = cuda.to_cpu(y.data) result = result.transpose(0, 2, 3, 1) result = result.reshape((result.shape[1:])) result += 120 result = np.uint8(result) return result
def train_tasks_continuosly( args, model, train, test, train2, test2, enable_ewc): # Train Task A or load trained model if os.path.exists("mlp_taskA.model") or args.skip_taskA: print("load taskA model") serializers.load_npz("./model50/mlp_taskA.model", model) else: print("train taskA") train_task(args, "train_task_a"+("_with_ewc" if enable_ewc else ""), model, args.epoch, train, {"TaskA": test}, args.batchsize) print("save the model") serializers.save_npz("mlp_taskA.model", model) if enable_ewc: print("enable EWC") model.compute_fisher(train) model.store_variables() # Train Task B print("train taskB") train_task(args, "train_task_ab"+("_with_ewc" if enable_ewc else ""), model, args.epoch, train2, {"TaskA": test, "TaskB": test2}, args.batchsize) print("save the model") serializers.save_npz( "mlp_taskAB"+("_with_ewc" if enable_ewc else "")+".model", model)
def parse(model_file, embed_file): # Load files Log.i('initialize preprocessor with %s' % embed_file) processor = Preprocessor(embed_file) Log.v('') Log.v("initialize ...") Log.v('') with np.load(model_file) as f: embeddings = np.zeros(f['embed/W'].shape, dtype=np.float32) # Set up a neural network cls = BLSTMCRF if _use_crf else BLSTM model = cls( embeddings=embeddings, n_labels=4, dropout=0.2, train=False, ) Log.i("loading a model from %s ..." % model_file) serializers.load_npz(model_file, model) LABELS = ['B', 'M', 'E', 'S'] def _process(raw_text): if not raw_text: return xs = [processor.transform_one([c for c in raw_text])] ys = model.parse(xs) labels = [LABELS[y] for y in ys[0]] print(' '.join(labels)) seq = [] for c, label in zip(raw_text, labels): seq.append(c) if label == 'E' or label == 'S': seq.append(' ') print(''.join(seq)) print('-') print("Input a Chinese sentence! (use 'q' to exit)") while True: x = input() if x == 'q': break _process(x)
def main(): args = parse_args() gen = net.Generator1() dis = net.Discriminator1() clip_rect = None if args.clip_rect: clip_rect = map(int, args.clip_rect.split(',')) clip_rect = tuple([clip_rect[0], clip_rect[1], clip_rect[0] + clip_rect[2], clip_rect[1] + clip_rect[3]]) gpu_device = None if args.gpu >= 0: device_id = args.gpu cuda.get_device(device_id).use() gen.to_gpu(device_id) dis.to_gpu(device_id) optimizer_gen = optimizers.Adam(alpha=0.001) optimizer_gen.setup(gen) optimizer_dis = optimizers.Adam(alpha=0.001) optimizer_dis.setup(dis) if args.input != None: serializers.load_npz(args.input + '.gen.model', gen) serializers.load_npz(args.input + '.gen.state', optimizer_gen) serializers.load_npz(args.input + '.dis.model', dis) serializers.load_npz(args.input + '.dis.state', optimizer_dis) if args.out_image_dir != None: if not os.path.exists(args.out_image_dir): try: os.mkdir(args.out_image_dir) except: print 'cannot make directory {}'.format(args.out_image_dir) exit() elif not os.path.isdir(args.out_image_dir): print 'file path {} exists but is not directory'.format(args.out_image_dir) exit() with open(args.dataset, 'rb') as f: images = pickle.load(f) train(gen, dis, optimizer_gen, optimizer_dis, images, args.epoch, batch_size=args.batch_size, margin=args.margin, save_epoch=args.save_epoch, lr_decay=args.lr_decay, output_path=args.output, out_image_dir=args.out_image_dir, clip_rect=clip_rect)
def main(): args = parse_args() gen1 = net.Generator1() gen2 = net.Generator2() dis = net.Discriminator2() clip_rect = None if args.clip_rect: clip_rect = map(int, args.clip_rect.split(',')) clip_rect = tuple([clip_rect[0], clip_rect[1], clip_rect[0] + clip_rect[2], clip_rect[1] + clip_rect[3]]) device_id = None if args.gpu >= 0: device_id = args.gpu cuda.get_device(device_id).use() gen1.to_gpu(device_id) gen2.to_gpu(device_id) dis.to_gpu(device_id) optimizer_gen = optimizers.Adam(alpha=0.001) optimizer_gen.setup(gen2) optimizer_dis = optimizers.Adam(alpha=0.001) optimizer_dis.setup(dis) serializers.load_npz(args.stack1 + '.gen.model', gen1) if args.input != None: serializers.load_npz(args.input + '.gen.model', gen2) serializers.load_npz(args.input + '.gen.state', optimizer_gen) serializers.load_npz(args.input + '.dis.model', dis) serializers.load_npz(args.input + '.dis.state', optimizer_dis) if args.out_image_dir != None: if not os.path.exists(args.out_image_dir): try: os.mkdir(args.out_image_dir) except: print 'cannot make directory {}'.format(args.out_image_dir) exit() elif not os.path.isdir(args.out_image_dir): print 'file path {} exists but is not directory'.format(args.out_image_dir) exit() with open(args.dataset, 'rb') as f: images = pickle.load(f) train(gen1, gen2, dis, optimizer_gen, optimizer_dis, images, args.epoch, batch_size=args.batch_size, margin=args.margin, save_epoch=args.save_epoch, lr_decay=args.lr_decay, output_path=args.output, out_image_dir=args.out_image_dir, clip_rect=clip_rect)
def inference(): cap = cv2.VideoCapture(0) # load model model = Netmodel('eval-model', CLASSES) serializers.load_npz(MODEL_NAME, model) cuda.get_device(GPU_ID).use() model.to_gpu() LUT = fromHEX2RGB(stats_opts['colormap'] ) fig3, axarr3 = plt.subplots(1, 1) batchRGB = np.zeros((1, 3, NEWSIZE[1], NEWSIZE[0]), dtype='float32') while(True): # Capture frame-by-frame ret, frame = cap.read() # process frame im = misc.imresize(frame, NEWSIZE, interp='bilinear') # convertion from HxWxCH to CHxWxH batchRGB[0,:,:,:] = im.astype(np.float32).transpose((2,1,0)) batchRGBn = batchRGB - 127.0 # data ready batch = chainer.Variable(cuda.cupy.asarray(batchRGBn)) # make predictions model((batch, []), test_mode=2) pred = model.probs.data.argmax(1) # move data back to CPU pred_ = cuda.to_cpu(pred) pred_ = LUT[pred_+1,:].squeeze() pred_ = pred_.transpose((1,0,2)) pred2 = cv2.cvtColor(pred_, cv2.COLOR_BGR2RGB) # Display the resulting frame cv2.imshow('frame',frame) cv2.imshow('pred',pred2) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
def inference(): cv2.namedWindow('frame', cv2.WINDOW_NORMAL) #cv2.namedWindow('pred', cv2.WINDOW_NORMAL) # load model model = Netmodel('eval-model', CLASSES) serializers.load_npz(MODEL_NAME, model) cuda.get_device(GPU_ID).use() model.to_gpu() LUT = fromHEX2RGB(stats_opts['colormap'] ) fig3, axarr3 = plt.subplots(1, 1) batchRGB = np.zeros((1, 3, NEWSIZE[1], NEWSIZE[0]), dtype='float32') # go throught the data flist = [] with open(TESTFILE) as f: for line in f: cline = re.split('\n',line) #print(cline[0]) frame = misc.imread(cline[0]) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # process frame im = misc.imresize(frame, NEWSIZE, interp='bilinear') # convertion from HxWxCH to CHxWxH batchRGB[0,:,:,:] = im.astype(np.float32).transpose((2,1,0)) batchRGBn = batchRGB - 127.0 # data ready batch = chainer.Variable(cuda.cupy.asarray(batchRGBn)) # make predictions model((batch, []), test_mode=2) pred = model.probs.data.argmax(1) # move data back to CPU pred_ = cuda.to_cpu(pred) pred_ = LUT[pred_+1,:].squeeze() pred_ = pred_.transpose((1,0,2)) pred2 = cv2.cvtColor(pred_, cv2.COLOR_BGR2RGB) #ipdb.set_trace() disp = (0.4*im + 0.6*pred2).astype(np.uint8) # Display the resulting frame cv2.imshow('frame',disp) #cv2.imshow('pred',pred2) if cv2.waitKey(-1) & 0xFF == ord('q'): break cv2.destroyAllWindows()