Python chainer.training 模块,StandardUpdater() 实例源码

我们从Python开源项目中,提取了以下29个代码示例,用于说明如何使用chainer.training.StandardUpdater()

项目:soft-dtw    作者:mblondel    | 项目源码 | 文件源码
def train(network, loss, X_tr, Y_tr, X_te, Y_te, n_epochs=30, gamma=1):
    model= Objective(network, loss=loss, gamma=gamma)

    #optimizer = optimizers.SGD()
    optimizer = optimizers.Adam()
    optimizer.setup(model)

    train = tuple_dataset.TupleDataset(X_tr, Y_tr)
    test = tuple_dataset.TupleDataset(X_te, Y_te)

    train_iter = iterators.SerialIterator(train, batch_size=1, shuffle=True)
    test_iter = iterators.SerialIterator(test, batch_size=1, repeat=False,
                                         shuffle=False)
    updater = training.StandardUpdater(train_iter, optimizer)
    trainer = training.Trainer(updater, (n_epochs, 'epoch'))

    trainer.run()
项目:chainer-examples    作者:nocotan    | 项目源码 | 文件源码
def main():
    model = L.Classifier(CNN())

    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    train, test = chainer.datasets.get_mnist(ndim=3)
    train_iter = chainer.iterators.SerialIterator(train, batch_size=100)
    test_iter = chainer.iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False)

    updater = training.StandardUpdater(train_iter, optimizer)
    trainer = training.Trainer(updater, (5, 'epoch'), out='result')

    trainer.extend(extensions.Evaluator(test_iter, model))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy','validation/main/accuracy']))
    trainer.extend(extensions.ProgressBar())

    trainer.run()
项目:chainercmd    作者:mitmul    | 项目源码 | 文件源码
def updater_creator(iterator, optimizer, devices, **kwargs):
    """A sample updater creator.

    An updater creator method should return an Updater object.
    Once an updter creator method is specified in the config YAML, the method
    will take iterator object, optimizer object, device dictionary, and "args"
    dictionary defined in the config YAML. You can make a custom Updater with
    those objects and return it.

    """
    if HAVE_NCCL and len(devices) > 1:
        updater = training.updaters.MultiprocessParallelUpdater(
            iterator, optimizer, devices=devices)
    elif len(devices) > 1:
        optimizer.lr /= len(devices)
        updater = training.ParallelUpdater(
            iterator, optimizer, devices=devices)
    else:
        updater = training.StandardUpdater(
            iterator, optimizer, device=devices['main'])
    return updater
项目:chainercmd    作者:mitmul    | 项目源码 | 文件源码
def updater_creator(iterator, optimizer, devices, **kwargs):
    """A sample updater creator.

    An updater creator method should return an Updater object.
    Once an updter creator method is specified in the config YAML, the method
    will take iterator object, optimizer object, device dictionary, and "args"
    dictionary defined in the config YAML. You can make a custom Updater with
    those objects and return it.

    """
    if HAVE_NCCL and len(devices) > 1:
        updater = training.updaters.MultiprocessParallelUpdater(
            iterator, optimizer, devices=devices)
    elif len(devices) > 1:
        optimizer.lr /= len(devices)
        updater = training.ParallelUpdater(
            iterator, optimizer, devices=devices)
    else:
        updater = training.StandardUpdater(
            iterator, optimizer, device=devices['main'])
    return updater
项目:sentence_similarity    作者:MorinoseiMorizo    | 项目源码 | 文件源码
def update_core(self):
        # When we pass one iterator and optimizer to StandardUpdater.__init__,
        # they are automatically named 'main'.
        train_iter = self.get_iterator('main')
        optimizer = self.get_optimizer('main')
        #report({"lr":optimizer.lr})

        # Get the next batch
        x, t = train_iter.__next__()

        # Compute the loss at this time step and accumulate it
        loss = optimizer.target(x, t)
        # optimizer.target.cleargrads()  # Clear the parameter gradients
        optimizer.target.zerograds()  # Clear the parameter gradients
        loss.backward()  # Backprop
        optimizer.update()  # Update the parameters
项目:NlpUtil    作者:trtd56    | 项目源码 | 文件源码
def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None):
        if opt_name == "Adam":
            opt = getattr(optimizers, opt_name)()
        else:
            opt = getattr(optimizers, opt_name)(lr)
        opt.setup(self.model)
        opt.add_hook(optimizer.GradientClipping(g_clip))

        updater = training.StandardUpdater(self.train_iter, opt, device=gpu)
        self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out=out_dir)
        self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu))
        self.trainer.extend(extensions.dump_graph('main/loss'))
        self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch'))
        self.trainer.extend(extensions.LogReport())
        self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'],
                                                   'epoch', file_name='loss.png'))
        self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
                                                   'epoch', file_name='accuracy.png'))
        self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss',
                                                    'main/accuracy', 'validation/main/accuracy',
                                                    'elapsed_time']))
        self.trainer.extend(extensions.ProgressBar())
项目:shoelace    作者:rjagerman    | 项目源码 | 文件源码
def test_linear_network():

    # To ensure repeatability of experiments
    np.random.seed(1042)

    # Load data set
    dataset = get_dataset(True)
    iterator = LtrIterator(dataset, repeat=True, shuffle=True)
    eval_iterator = LtrIterator(dataset, repeat=False, shuffle=False)

    # Create neural network with chainer and apply our loss function
    predictor = links.Linear(None, 1)
    loss = Ranker(predictor, listnet)

    # Build optimizer, updater and trainer
    optimizer = optimizers.Adam(alpha=0.2)
    optimizer.setup(loss)
    updater = training.StandardUpdater(iterator, optimizer)
    trainer = training.Trainer(updater, (10, 'epoch'))

    # Evaluate loss before training
    before_loss = eval(loss, eval_iterator)

    # Train neural network
    trainer.run()

    # Evaluate loss after training
    after_loss = eval(loss, eval_iterator)

    # Assert precomputed values
    assert_almost_equal(before_loss, 0.26958397)
    assert_almost_equal(after_loss, 0.2326711)
项目:instance_normalization_chainer    作者:crcrpar    | 项目源码 | 文件源码
def main(gpu_id=-1, bs=32, epoch=20, out='./result', resume=''):
    net = ShallowConv()
    model = L.Classifier(net)
    if gpu_id >= 0:
        chainer.cuda.get_device_from_id(gpu_id)
        model.to_gpu()
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    train, test = chainer.datasets.get_mnist(ndim=3)
    train_iter = chainer.iterators.SerialIterator(train, bs)
    test_iter = chainer.iterators.SerialIterator(
        test, bs, repeat=False, shuffle=False)

    updater = training.StandardUpdater(train_iter, optimizer, device=gpu_id)
    trainer = training.Trainer(updater, (epoch, 'epoch'), out=out)
    trainer.extend(extensions.ParameterStatistics(model.predictor))
    trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
    trainer.extend(extensions.LogReport(log_name='parameter_statistics'))
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
    trainer.extend(extensions.ProgressBar())

    if resume:
        chainer.serializers.load_npz(resume, trainer)

    trainer.run()
项目:instance_normalization_chainer    作者:crcrpar    | 项目源码 | 文件源码
def main(gpu_id=-1, bs=32, epoch=20, out='./not_layer_result', resume=''):
    net = ShallowConv()
    model = L.Classifier(net)
    if gpu_id >= 0:
        chainer.cuda.get_device_from_id(gpu_id)
        model.to_gpu()
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    train, test = chainer.datasets.get_mnist(ndim=3)
    train_iter = chainer.iterators.SerialIterator(train, bs)
    test_iter = chainer.iterators.SerialIterator(test, bs, repeat=False,
                                                 shuffle=False)

    updater = training.StandardUpdater(train_iter, optimizer, device=gpu_id)
    trainer = training.Trainer(updater, (epoch, 'epoch'), out=out)
    trainer.extend(extensions.ParameterStatistics(model.predictor))
    trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
    trainer.extend(extensions.ProgressBar())

    if resume:
        chainer.serializers.load_npz(resume, trainer)

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = EmbeddingTagger(args.model, 50, 20, 30)
    model.setup_training(args.embed)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    train = CCGBankDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = CCGBankDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.SGD(lr=0.01)
    optimizer.setup(model)
    updater = training.StandardUpdater(train_iter, optimizer)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 5000, 'iteration'
    log_interval = 200, 'iteration'
    val_model = model.copy()

    trainer.extend(extensions.Evaluator(val_iter, val_model), trigger=val_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:chainermn    作者:chainer    | 项目源码 | 文件源码
def setup_mnist_trainer(self, display_log=False):
        batchsize = 100
        n_units = 100

        comm = self.communicator
        model = L.Classifier(MLP(n_units, 10))

        optimizer = chainermn.create_multi_node_optimizer(
            chainer.optimizers.Adam(), comm)
        optimizer.setup(model)

        if comm.rank == 0:
            train, test = chainer.datasets.get_mnist()
        else:
            train, test = None, None

        train = chainermn.scatter_dataset(train, comm, shuffle=True)
        test = chainermn.scatter_dataset(test, comm, shuffle=True)

        train_iter = chainer.iterators.SerialIterator(train, batchsize)
        test_iter = chainer.iterators.SerialIterator(test, batchsize,
                                                     repeat=False,
                                                     shuffle=False)

        updater = training.StandardUpdater(
            train_iter,
            optimizer
        )

        return updater, optimizer, train_iter, test_iter, model
项目:chainer-examples    作者:nocotan    | 项目源码 | 文件源码
def main():
    unit = 1000
    batchsize = 100
    epoch = 20

    model = L.Classifier(MLP(unit, 10))

    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    train, test = chainer.datasets.get_mnist()
    train_iter = chainer.iterators.SerialIterator(train, batchsize)
    test_iter = chainer.iterators.SerialIterator(test, batchsize, repeat=False, shuffle=False)

    updater = training.StandardUpdater(train_iter, optimizer)
    trainer = training.Trainer(updater, (epoch, 'epoch'), out='result')

    trainer.extend(extensions.Evaluator(test_iter, model))
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=(epoch, 'epoch'))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
    trainer.extend(extensions.ProgressBar())

    trainer.run()
项目:vfm    作者:cemoody    | 项目源码 | 文件源码
def fit(model, train, valid, device=-1, batchsize=4096, n_epoch=500,
        resume=None, alpha=1e-3):
    if device >= 0:
        chainer.cuda.get_device(device).use()
        model.to_gpu(device)
    optimizer = chainer.optimizers.Adam(alpha)
    optimizer.setup(model)

    # Setup iterators
    train_iter = chainer.iterators.SerialIterator(train, batchsize)
    valid_iter = chainer.iterators.SerialIterator(valid, batchsize,
                                                  repeat=False, shuffle=False)
    updater = training.StandardUpdater(train_iter, optimizer, device=device)
    trainer = training.Trainer(updater, (n_epoch, 'epoch'),
                               out='out_' + str(device))

    # Setup logging, printing & saving
    keys = ['loss', 'rmse', 'bias', 'kld0', 'kld1']
    keys += ['kldg', 'kldi', 'hypg', 'hypi']
    keys += ['hypglv', 'hypilv']
    reports = ['epoch']
    reports += ['main/' + key for key in keys]
    reports += ['validation/main/rmse']
    trainer.extend(TestModeEvaluator(valid_iter, model, device=device))
    trainer.extend(extensions.Evaluator(valid_iter, model, device=device))
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=(10, 'epoch'))
    trainer.extend(extensions.LogReport(trigger=(1, 'epoch')))
    trainer.extend(extensions.PrintReport(reports))
    trainer.extend(extensions.ProgressBar(update_interval=10))

    # If previous model detected, resume
    if resume:
        print("Loading from {}".format(resume))
        chainer.serializers.load_npz(resume, trainer)

    # Run the model
    trainer.run()
项目:chainer-pspnet    作者:mitmul    | 项目源码 | 文件源码
def create_updater(train_iter, optimizer, devices):
    if HAVE_NCCL and len(devices) > 1:
        updater = training.updaters.MultiprocessParallelUpdater(
            train_iter, optimizer, devices=devices)
    elif len(devices) > 1:
        optimizer.lr /= len(devices)
        updater = training.ParallelUpdater(
            train_iter, optimizer, devices=devices)
    else:
        updater = training.StandardUpdater(
            train_iter, optimizer, device=devices['main'])
    return updater
项目:chainer-pspnet    作者:mitmul    | 项目源码 | 文件源码
def create_updater(train_iter, optimizer, device):
    updater = training.StandardUpdater(train_iter, optimizer, device=device)
    return updater
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = LSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers,
            args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print 'Load model from', args.initmodel
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print 'Load pretrained word embeddings from', args.pretrained
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMParserDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(val_iter, eval_model,
                    converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_accuracy',
        'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = LSTMTagger(args.model, args.word_emb_size, args.afix_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f:
            log(args, f)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMTaggerDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 2000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = BiaffineJaLSTMParser(args.model, args.word_emb_size, args.char_emb_size,
            args.nlayers, args.hidden_dim, args.dep_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMParserDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(2e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.ExponentialShift(
                    "eps", .75, 2e-3), trigger=(2500, 'iteration'))
    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_accuracy',
        'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = JaLSTMParser(args.model, args.word_emb_size, args.char_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dep_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    train = LSTMParserDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/tagging_loss',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_loss', 'validation/main/tagging_accuracy',
        'validation/main/parsing_loss', 'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = LSTMTagger(args.model, args.word_emb_size, args.char_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f:
            log(args, f)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    train = LSTMTaggerDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = LSTMTagger(args.model, args.word_emb_size, args.afix_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f:
            log(args, f)
    if args.initmodel:
        print 'Load model from', args.initmodel
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print 'Load pretrained word embeddings from', args.pretrained
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMTaggerDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 2000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = LSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers,
            args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f: log(args, f)

    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    train = LSTMParserDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = LSTMParserDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.Adam(beta2=0.9)
    # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    # optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(val_iter, eval_model,
                    converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration',
        'main/tagging_accuracy', 'main/tagging_loss',
        'main/parsing_accuracy', 'main/parsing_loss',
        'validation/main/tagging_accuracy',
        'validation/main/parsing_accuracy'
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = JaCCGEmbeddingTagger(args.model,
                args.word_emb_size, args.char_emb_size)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    train = JaCCGTaggerDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = JaCCGTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.AdaGrad()
    optimizer.setup(model)
    # optimizer.add_hook(WeightDecay(1e-8))
    my_converter = lambda x, dev: convert.concat_examples(x, dev, (None,-1,None,None))
    updater = training.StandardUpdater(train_iter, optimizer, converter=my_converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, my_converter), trigger=val_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = PeepHoleLSTMTagger(args.model, args.word_emb_size, args.afix_emb_size,
            args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio)
    with open(args.model + "/params", "w") as f:
            log(args, f)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()
        model.to_gpu()

    converter = lambda x, device: \
            concat_examples(x, device=device, padding=-1)

    train = LSTMTaggerDataset(args.model, args.train)
    train_iter = SerialIterator(train, args.batchsize)
    val = LSTMTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.MomentumSGD(momentum=0.7)
    optimizer.setup(model)
    optimizer.add_hook(WeightDecay(1e-6))
    optimizer.add_hook(GradientClipping(5.))
    updater = training.StandardUpdater(train_iter, optimizer,
            device=args.gpu, converter=converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, converter, device=args.gpu), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:DeepPoseComparison    作者:ynaka81    | 项目源码 | 文件源码
def start(self):
        """ Train pose net. """
        # set random seed.
        if self.seed is not None:
            random.seed(self.seed)
            np.random.seed(self.seed)
            if self.gpu >= 0:
                chainer.cuda.cupy.random.seed(self.seed)
        # initialize model to train.
        model = AlexNet(self.Nj, self.use_visibility)
        if self.resume_model:
            serializers.load_npz(self.resume_model, model)
        # prepare gpu.
        if self.gpu >= 0:
            chainer.cuda.get_device(self.gpu).use()
            model.to_gpu()
        # load the datasets.
        train = PoseDataset(self.train, data_augmentation=self.data_augmentation)
        val = PoseDataset(self.val, data_augmentation=False)
        # training/validation iterators.
        train_iter = chainer.iterators.MultiprocessIterator(
            train, self.batchsize)
        val_iter = chainer.iterators.MultiprocessIterator(
            val, self.batchsize, repeat=False, shuffle=False)
        # set up an optimizer.
        optimizer = self._get_optimizer()
        optimizer.setup(model)
        if self.resume_opt:
            chainer.serializers.load_npz(self.resume_opt, optimizer)
        # set up a trainer.
        updater = training.StandardUpdater(train_iter, optimizer, device=self.gpu)
        trainer = training.Trainer(
            updater, (self.epoch, 'epoch'), os.path.join(self.out, 'chainer'))
        # standard trainer settings
        trainer.extend(extensions.dump_graph('main/loss'))
        val_interval = (10, 'epoch')
        trainer.extend(TestModeEvaluator(val_iter, model, device=self.gpu), trigger=val_interval)
        # save parameters and optimization state per validation step
        resume_interval = (self.epoch/10, 'epoch')
        trainer.extend(extensions.snapshot_object(
            model, "epoch-{.updater.epoch}.model"), trigger=resume_interval)
        trainer.extend(extensions.snapshot_object(
            optimizer, "epoch-{.updater.epoch}.state"), trigger=resume_interval)
        trainer.extend(extensions.snapshot(
            filename="epoch-{.updater.epoch}.iter"), trigger=resume_interval)
        # show log
        log_interval = (10, "iteration")
        trainer.extend(extensions.LogReport(trigger=log_interval))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(extensions.PrintReport(
            ['epoch', 'main/loss', 'validation/main/loss', 'lr']), trigger=log_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))
        # start training
        if self.resume:
            chainer.serializers.load_npz(self.resume, trainer)
        trainer.run()
项目:vsmlib    作者:undertherain    | 项目源码 | 文件源码
def train(args):
    time_start = timer()
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        cuda.check_cuda_available()


    if args.path_vocab == '':
        vocab = create_from_dir(args.path_corpus)
    else:
        vocab = Vocabulary()
        vocab.load(args.path_vocab)
        logger.info("loaded vocabulary")

    if args.context_representation != 'word': # for deps or ner context representation, we need a new context vocab for NS or HSM loss function.
        vocab_context = create_from_annotated_dir(args.path_corpus, representation=args.context_representation)
    else :
        vocab_context = vocab

    loss_func = get_loss_func(args, vocab_context)
    model = get_model(args, loss_func, vocab)

    if args.gpu >= 0:
        model.to_gpu()
        logger.debug("model sent to gpu")

    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    if os.path.isfile(args.path_corpus):
        train, val = get_data(args.path_corpus, vocab)
        if args.test:
            train = train[:100]
            val = val[:100]
        train_iter = WindowIterator(train, args.window, args.batchsize)
        val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)
    else:
        train_iter = DirWindowIterator(path=args.path_corpus, vocab=vocab, window_size=args.window, batch_size=args.batchsize)
    updater = training.StandardUpdater(train_iter, optimizer, converter=convert, device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.path_out)

    if os.path.isfile(args.path_corpus):
        trainer.extend(extensions.Evaluator(val_iter, model, converter=convert, device=args.gpu))
    trainer.extend(extensions.LogReport())
    if os.path.isfile(args.path_corpus):
        trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'elapsed_time']))
    else:
        trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'elapsed_time']))
    # trainer.extend(extensions.ProgressBar())
    trainer.run()
    model = create_model(args, model, vocab)
    time_end = timer()
    model.metadata["execution_time"] = time_end - time_start
    return model
项目:vsmlib    作者:undertherain    | 项目源码 | 文件源码
def main(options):

    #load the config params
    gpu = options['gpu']
    data_path = options['path_dataset']
    embeddings_path = options['path_vectors']
    n_epoch = options['epochs']
    batch_size = options['batchsize']
    test = options['test']
    embed_dim = options['embed_dim']
    freeze = options['freeze_embeddings']
    distance_embed_dim = options['distance_embed_dim']

    #load the data
    data_processor = DataProcessor(data_path)
    data_processor.prepare_dataset()
    train_data = data_processor.train_data
    test_data = data_processor.test_data

    vocab = data_processor.vocab
    cnn = CNN(n_vocab=len(vocab), input_channel=1,
                    output_channel=100, 
                    n_label=19, 
                    embed_dim=embed_dim, position_dims=distance_embed_dim, freeze=freeze)
    cnn.load_embeddings(embeddings_path, data_processor.vocab)
    model = L.Classifier(cnn)

    #use GPU if flag is set
    if gpu >= 0:
        model.to_gpu()

    #setup the optimizer
    optimizer = O.Adam()
    optimizer.setup(model)

    train_iter = chainer.iterators.SerialIterator(train_data, batch_size)
    test_iter = chainer.iterators.SerialIterator(test_data, batch_size,repeat=False, shuffle=False) 

    updater = training.StandardUpdater(train_iter, optimizer, converter=convert.concat_examples, device=gpu)
    trainer = training.Trainer(updater, (n_epoch, 'epoch'))

    # Evaluation
    test_model = model.copy()
    test_model.predictor.train = False
    trainer.extend(extensions.Evaluator(test_iter, test_model, device=gpu, converter=convert.concat_examples))


    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
            'main/accuracy', 'validation/main/accuracy']))
    trainer.extend(extensions.ProgressBar(update_interval=10))


    trainer.run()
项目:vsmlib    作者:undertherain    | 项目源码 | 文件源码
def main(options):

    #load the config params
    gpu = options['gpu']
    data_path = options['path_dataset']
    embeddings_path = options['path_vectors']
    n_epoch = options['epochs']
    batchsize = options['batchsize']
    test = options['test']
    embed_dim = options['embed_dim']
    freeze = options['freeze_embeddings']

    #load the data
    data_processor = DataProcessor(data_path, test)
    data_processor.prepare_dataset()
    train_data = data_processor.train_data
    dev_data = data_processor.dev_data
    test_data = data_processor.test_data

    vocab = data_processor.vocab
    cnn = CNN(n_vocab=len(vocab), input_channel=1,
                  output_channel=10, n_label=2, embed_dim=embed_dim, freeze=freeze)
    cnn.load_embeddings(embeddings_path, data_processor.vocab)
    model = L.Classifier(cnn)
    if gpu >= 0:
        model.to_gpu()

    #setup the optimizer
    optimizer = O.Adam()
    optimizer.setup(model)


    train_iter = chainer.iterators.SerialIterator(train_data, batchsize)
    dev_iter = chainer.iterators.SerialIterator(dev_data, batchsize,repeat=False, shuffle=False)
    test_iter = chainer.iterators.SerialIterator(test_data, batchsize,repeat=False, shuffle=False) 
    batch1 = train_iter.next()
    batch2 = dev_iter.next()
    updater = training.StandardUpdater(train_iter, optimizer, converter=util.concat_examples, device=gpu)
    trainer = training.Trainer(updater, (n_epoch, 'epoch'))

    # Evaluation
    eval_model = model.copy()
    eval_model.predictor.train = False
    trainer.extend(extensions.Evaluator(dev_iter, eval_model, device=gpu, converter=util.concat_examples))

    test_model = model.copy()
    test_model.predictor.train = False

    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy']))
    trainer.extend(extensions.ProgressBar(update_interval=10))


    trainer.run()
项目:ddnn    作者:kunglab    | 项目源码 | 文件源码
def __init__(self, folder, chain, train, test, batchsize=500, resume=True, gpu=0, nepoch=1, reports=[]):
        self.reports = reports
        self.nepoch = nepoch
        self.folder = folder
        self.chain = chain
        self.gpu = gpu

        if self.gpu >= 0:
            chainer.cuda.get_device(gpu).use()
            chain.to_gpu(gpu)
        self.eval_chain = eval_chain = chain.copy()
        self.chain.test = False
        self.eval_chain.test = True
        self.testset = test

        if not os.path.exists(folder):
            os.makedirs(folder)

        train_iter = chainer.iterators.SerialIterator(train, batchsize, shuffle=True)
        test_iter = chainer.iterators.SerialIterator(test, batchsize,
                                                     repeat=False, shuffle=False)

        updater = training.StandardUpdater(train_iter, chain.optimizer, device=gpu)
        trainer = training.Trainer(updater, (nepoch, 'epoch'), out=folder)
        # trainer.extend(TrainingModeSwitch(chain))
        trainer.extend(extensions.dump_graph('main/loss'))
        trainer.extend(extensions.Evaluator(test_iter, eval_chain, device=gpu), trigger=(1,'epoch'))
        trainer.extend(extensions.snapshot_object(
            chain, 'chain_snapshot_epoch_{.updater.epoch:06}'), trigger=(1,'epoch'))
        trainer.extend(extensions.snapshot(
            filename='snapshot_epoch_{.updater.epoch:06}'), trigger=(1,'epoch'))
        trainer.extend(extensions.LogReport(trigger=(1,'epoch')), trigger=(1,'iteration'))
        trainer.extend(extensions.PrintReport(
            ['epoch']+reports), trigger=IntervalTrigger(1,'epoch'))

        self.trainer = trainer

        if resume:
            #if resumeFrom is not None:
            #    trainerFile = os.path.join(resumeFrom[0],'snapshot_epoch_{:06}'.format(resumeFrom[1]))
            #    S.load_npz(trainerFile, trainer)
            i = 1
            trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
            while i <= nepoch and os.path.isfile(trainerFile):
                i = i + 1
                trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
            i = i - 1
            trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
            if i >= 0 and os.path.isfile(trainerFile):
                S.load_npz(trainerFile, trainer)