我们从Python开源项目中,提取了以下1个代码示例,用于说明如何使用chainer.initializers()。
def __init__(self, n_class=None, pretrained_model=None, mean=None, initialW=None, initial_bias=None): if n_class is None: if pretrained_model in self._models: n_class = self._models[pretrained_model]['n_class'] else: n_class = 1000 if mean is None: if pretrained_model in self._models: mean = self._models[pretrained_model]['mean'] else: mean = _imagenet_mean self.mean = mean if initialW is None: # Employ default initializers used in the original paper. initialW = normal.Normal(0.01) if pretrained_model: # As a sampling process is time-consuming, # we employ a zero initializer for faster computation. initialW = constant.Zero() kwargs = {'initialW': initialW, 'initial_bias': initial_bias} super(VGG16, self).__init__() with self.init_scope(): self.conv1_1 = Conv2DActiv(None, 64, 3, 1, 1, **kwargs) self.conv1_2 = Conv2DActiv(None, 64, 3, 1, 1, **kwargs) self.pool1 = _max_pooling_2d self.conv2_1 = Conv2DActiv(None, 128, 3, 1, 1, **kwargs) self.conv2_2 = Conv2DActiv(None, 128, 3, 1, 1, **kwargs) self.pool2 = _max_pooling_2d self.conv3_1 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs) self.conv3_2 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs) self.conv3_3 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs) self.pool3 = _max_pooling_2d self.conv4_1 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.conv4_2 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.conv4_3 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.pool4 = _max_pooling_2d self.conv5_1 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.conv5_2 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.conv5_3 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.pool5 = _max_pooling_2d self.fc6 = Linear(None, 4096, **kwargs) self.fc6_relu = relu self.fc6_dropout = dropout self.fc7 = Linear(None, 4096, **kwargs) self.fc7_relu = relu self.fc7_dropout = dropout self.fc8 = Linear(None, n_class, **kwargs) self.prob = softmax if pretrained_model in self._models: path = download_model(self._models[pretrained_model]['url']) chainer.serializers.load_npz(path, self) elif pretrained_model: chainer.serializers.load_npz(pretrained_model, self)