Python cmath 模块,isinf() 实例源码

我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用cmath.isinf()

项目:meta    作者:flowdas    | 项目源码 | 文件源码
def _load_(self, value, context):
        if isinstance(value, bool):
            if self.get_options().allow_bool:
                return int(value)
            else:
                raise ValueError()
        elif isinstance(value, integer_types):
            if self.get_options().jssafe and not (-MAX_SAFE_INTEGER <= value <= MAX_SAFE_INTEGER):
                raise ValueError()
            return value
        elif isinstance(value, float):
            if not self.get_options().allow_nan and (math.isnan(value) or math.isinf(value)):
                raise ValueError()
            return value
        else:
            raise ValueError()
项目:meta    作者:flowdas    | 项目源码 | 文件源码
def _load_(self, value, context):
        if isinstance(value, decimal.Decimal):
            if not self.get_options().allow_nan and not value.is_finite():
                raise ValueError()
            return value
        elif isinstance(value, text_types):
            try:
                with decimal.localcontext() as ctx:
                    ctx.traps[decimal.InvalidOperation] = 1
                    value = decimal.Decimal(value)
                    if not self.get_options().allow_nan and not value.is_finite():
                        raise ValueError()
                    return value
            except decimal.InvalidOperation:
                raise ValueError()
        elif isinstance(value, integer_types):
            return decimal.Decimal(value)
        elif isinstance(value, float):
            if not self.get_options().allow_nan:
                if math.isnan(value) or math.isinf(value):
                    raise ValueError()
            return decimal.Decimal(value)
        else:
            raise ValueError()
项目:meta    作者:flowdas    | 项目源码 | 文件源码
def _load_(self, value, context):
        if isinstance(value, complex):
            pass
        elif isinstance(value, (integer_types, float)):
            value = complex(value)
        elif isinstance(value, (tuple, list)):
            if len(value) != 2:
                raise ValueError()
            if not isinstance(value[0], (integer_types, float)) or not isinstance(value[1], (integer_types, float)):
                raise ValueError()
            value = complex(value[0], value[1])
        else:
            raise ValueError()
        if not self.get_options().allow_nan and (cmath.isnan(value) or cmath.isinf(value)):
            raise ValueError()
        return value
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN)))
项目:oil    作者:oilshell    | 项目源码 | 文件源码
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN)))
项目:python2-tracer    作者:extremecoders-re    | 项目源码 | 文件源码
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN)))
项目:web_ctp    作者:molebot    | 项目源码 | 文件源码
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN)))
项目:pefile.pypy    作者:cloudtracer    | 项目源码 | 文件源码
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN)))
项目:ouroboros    作者:pybee    | 项目源码 | 文件源码
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN)))
项目:ndk-python    作者:gittor    | 项目源码 | 文件源码
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN)))
项目:kbe_server    作者:xiaohaoppy    | 项目源码 | 文件源码
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN)))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))
项目:oil    作者:oilshell    | 项目源码 | 文件源码
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))
项目:python2-tracer    作者:extremecoders-re    | 项目源码 | 文件源码
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))
项目:web_ctp    作者:molebot    | 项目源码 | 文件源码
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))
项目:pefile.pypy    作者:cloudtracer    | 项目源码 | 文件源码
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))
项目:ouroboros    作者:pybee    | 项目源码 | 文件源码
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))
项目:ndk-python    作者:gittor    | 项目源码 | 文件源码
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))
项目:kbe_server    作者:xiaohaoppy    | 项目源码 | 文件源码
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))