Python cv2 模块,findContours() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用cv2.findContours()

项目:Speedy-TSLSR    作者:talhaHavadar    | 项目源码 | 文件源码
def __bound_contours(roi):
    """
        returns modified roi(non-destructive) and rectangles that founded by the algorithm.
        @roi region of interest to find contours
        @return (roi, rects)
    """

    roi_copy = roi.copy()
    roi_hsv = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV)
    # filter black color
    mask1 = cv2.inRange(roi_hsv, np.array([0, 0, 0]), np.array([180, 255, 125]))
    mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
    mask1 = cv2.Canny(mask1, 100, 300)
    mask1 = cv2.GaussianBlur(mask1, (1, 1), 0)
    mask1 = cv2.Canny(mask1, 100, 300)

    # mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)))

    # Find contours for detected portion of the image
    im2, cnts, hierarchy = cv2.findContours(mask1.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # get largest five contour area
    rects = []
    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)
        x, y, w, h = cv2.boundingRect(approx)
        if h >= 15:
            # if height is enough
            # create rectangle for bounding
            rect = (x, y, w, h)
            rects.append(rect)
            cv2.rectangle(roi_copy, (x, y), (x+w, y+h), (0, 255, 0), 1);

    return (roi_copy, rects)
项目:PaperHelper    作者:EdgarNg1024    | 项目源码 | 文件源码
def find_squares(img):
    img = cv2.GaussianBlur(img, (5, 5), 0)
    squares = []
    for gray in cv2.split(img):
        for thrs in xrange(0, 255, 26):
            if thrs == 0:
                bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                bin = cv2.dilate(bin, None)
            else:
                retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
            bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
            for cnt in contours:
                cnt_len = cv2.arcLength(cnt, True)
                cnt = cv2.approxPolyDP(cnt, 0.02 * cnt_len, True)
                if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
                    cnt = cnt.reshape(-1, 2)
                    max_cos = np.max([angle_cos(cnt[i], cnt[(i + 1) % 4], cnt[(i + 2) % 4]) for i in xrange(4)])
                    if max_cos < 0.1:
                        squares.append(cnt)
    return squares
项目:object-detection-python-opencv    作者:hasanaliqureshi    | 项目源码 | 文件源码
def find_biggest_contour(image):
    # Copy
    image = image.copy()
    #input, gives all the contours, contour approximation compresses horizontal,
    #vertical, and diagonal segments and leaves only their end points. For example,
    #an up-right rectangular contour is encoded with 4 points.
    #Optional output vector, containing information about the image topology.
    #It has as many elements as the number of contours.
    #we dont need it
    _, contours, hierarchy = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

    # Isolate largest contour
    contour_sizes = [(cv2.contourArea(contour), contour) for contour in contours]
    biggest_contour = max(contour_sizes, key=lambda x: x[0])[1]

    mask = np.zeros(image.shape, np.uint8)
    cv2.drawContours(mask, [biggest_contour], -1, 255, -1)
    return biggest_contour, mask
项目:illumeme    作者:josmcg    | 项目源码 | 文件源码
def find_triangles(filename):
    FIRST = 0
    RED = (0, 0, 255)
    THICKNESS = 3
    copy = img = cv2.imread(filename)
    grey_img = cv2.imread(file_name, cv2.IMREAD_GRAYSCALE)
    ret, thresh = cv2.threshold(grey_img, 127, 255, 1)
    contours, h = cv2.findContours(thresh, 1, 2)
    largest = None
    for contour in countours:
        approx = cv2.approxPolyDP(contour,0.01*cv2.arcLength(contour,True),True)
        if len(approx) == 3:
            #triangle found
            if largest is None or cv2.contourArea(contour) > cv2.contourArea(largest):
                largest = contour

    #write file
    cv2.drawContours(copy, [largest], FIRST, RED, THICKNESS)
    cv2.imwrite(filename +"_result", copy)
项目:idmatch    作者:maddevsio    | 项目源码 | 文件源码
def remove_borders(image):
    ratio = image.shape[0] / 500.0
    orig = image.copy()
    image = resize(image, height=500)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(gray, 75, 200)
    _, cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cv2.imshow('edged', edged)
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
    screenCnt = None
    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)
        print(len(approx) == 4)
        if len(approx) == 4:
            screenCnt = approx
            break
    cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
    if screenCnt is not None and len(screenCnt) > 0:
        return four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
    return orig
项目:pyku    作者:dubvulture    | 项目源码 | 文件源码
def extract_corners(self, image):
        """
        Find the 4 corners of a binary image
        :param image: binary image
        :return: 4 main vertices or None
        """
        cnts, _ = cv2.findContours(image.copy(),
                                   cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)[-2:]
        cnt = cnts[0]
        _, _, h, w = cv2.boundingRect(cnt)
        epsilon = min(h, w) * 0.5
        vertices = cv2.approxPolyDP(cnt, epsilon, True)
        vertices = cv2.convexHull(vertices, clockwise=True)
        vertices = self.correct_vertices(vertices)

        return vertices
项目:yonkoma2data    作者:esuji5    | 项目源码 | 文件源码
def homography(self, img, outdir_name=''):
        orig = img
        # 2??????
        gray = cv2.cvtColor(orig, cv2.COLOR_BGR2GRAY)
        gauss = cv2.GaussianBlur(gray, (5, 5), 0)
        canny = cv2.Canny(gauss, 50, 150)

        # 2??????????
        contours = cv2.findContours(canny, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)[1]
        # ???????????
        contours.sort(key=cv2.contourArea, reverse=True)

        if len(contours) > 0:
            arclen = cv2.arcLength(contours[0], True)
            # ???????????
            approx = cv2.approxPolyDP(contours[0], 0.01 * arclen, True)
            # warp = approx.copy()
            if len(approx) >= 4:
                self.last_approx = approx.copy()
            elif self.last_approx is not None:
                approx = self.last_approx
        else:
            approx = self.last_approx
        rect = self.get_rect_by_points(approx)
        # warped = self.transform_by4(orig, warp[:, 0, :])
        return orig[rect[0]:rect[1], rect[2]:rect[3]]
项目:piwall-cvtools    作者:infinnovation    | 项目源码 | 文件源码
def find_squares(img, cos_limit = 0.1):
    print('search for squares with threshold %f' % cos_limit)
    img = cv2.GaussianBlur(img, (5, 5), 0)
    squares = []
    for gray in cv2.split(img):
        for thrs in xrange(0, 255, 26):
            if thrs == 0:
                bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                bin = cv2.dilate(bin, None)
            else:
                retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
            bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
            for cnt in contours:
                cnt_len = cv2.arcLength(cnt, True)
                cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
                if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
                    cnt = cnt.reshape(-1, 2)
                    max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                    if max_cos < cos_limit :
                        squares.append(cnt)
                    else:
                        #print('dropped a square with max_cos %f' % max_cos)
                        pass
    return squares

###
### Version V2.  Collect meta-data along the way,  with commentary added.
###
项目:AutomatorX    作者:xiaoyaojjian    | 项目源码 | 文件源码
def diff_rect(img1, img2, pos=None):
    """find counters include pos in differences between img1 & img2 (cv2 images)"""
    diff = cv2.absdiff(img1, img2)
    diff = cv2.GaussianBlur(diff, (3, 3), 0)
    edges = cv2.Canny(diff, 100, 200)
    _, thresh = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY)
    contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    if not contours:
        return None
    contours.sort(key=lambda c: len(c))
    # no pos provide, just return the largest different area rect
    if pos is None:
        cnt = contours[-1]
        x0, y0, w, h = cv2.boundingRect(cnt)
        x1, y1 = x0+w, y0+h
        return (x0, y0, x1, y1)
    # else the rect should contain the pos
    x, y = pos
    for i in range(len(contours)):
        cnt = contours[-1-i]
        x0, y0, w, h = cv2.boundingRect(cnt)
        x1, y1 = x0+w, y0+h
        if x0 <= x <= x1 and y0 <= y <= y1:
            return (x0, y0, x1, y1)
项目:2017-robot    作者:frc1418    | 项目源码 | 文件源码
def find_contours(self, img):

        thresh_img = self.threshold(img)

        _, contours, _ = cv2.findContours(thresh_img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        result = []
        for cnt in contours:
            approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True)

            if self.draw_approx:
                cv2.drawContours(self.out, [approx], -1, self.BLUE, 2, lineType=8)

            if len(approx) > 3 and len(approx) < 15:
                _, _, w, h = cv2.boundingRect(approx)
                if h > self.min_height and w > self.min_width:
                        hull = cv2.convexHull(cnt)
                        approx2 = cv2.approxPolyDP(hull,0.01*cv2.arcLength(hull,True),True)

                        if self.draw_approx2:
                            cv2.drawContours(self.out, [approx2], -1, self.GREEN, 2, lineType=8)

                        result.append(approx2)
        return result
项目:APEX    作者:ymollard    | 项目源码 | 文件源码
def find_center(self, name, frame, mask, min_radius):
        if name not in self.pts:
            self.pts[name] = deque(maxlen=self.params['tracking']['buffer_size'])

        # find contours in the mask and initialize the current (x, y) center of the ball
        cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]

        # only proceed if at least one contour was found
        if len(cnts) > 0:
            # find the largest contour in the mask, then use it to compute the minimum enclosing circle and centroid
            c = max(cnts, key=cv2.contourArea)
            ((x, y), radius) = cv2.minEnclosingCircle(c)
            center = (int(x), int(y))

            # only proceed if the radius meets a minimum size
            if radius > min_radius:
                # draw the circle and centroid on the frame, then update the list of tracked points
                cv2.circle(frame, center, int(radius), (0, 255, 255), 2)
                cv2.circle(frame, center, 5, (0, 0, 255), -1)
                self.pts[name].appendleft(center)
                smooth_points = 8
                return (int(np.mean([self.pts[name][i][0] for i in range(min(smooth_points, len(self.pts[name])))])),
                        int(np.mean([self.pts[name][i][1] for i in range(min(smooth_points, len(self.pts[name])))]))), radius
        return None, None
项目:Artificial-Potential-Field    作者:vampcoder    | 项目源码 | 文件源码
def classify(img):
    cimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img2 = cv2.medianBlur(cimg, 13)

    ret, thresh1 = cv2.threshold(cimg, 100, 120, cv2.THRESH_BINARY)
    t2 = copy.copy(thresh1)

    x, y = thresh1.shape
    arr = np.zeros((x, y, 3), np.uint8)
    final_contours = []
    image, contours, hierarchy = cv2.findContours(t2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #cv2.imshow('image', image)
    #k = cv2.waitKey(0)
    for i in range(len(contours)):
        cnt = contours[i]
        if cv2.contourArea(cnt) > 3000 and cv2.contourArea(cnt) < 25000:
            cv2.drawContours(img, [cnt], -1, [0, 255, 255])
            cv2.fillConvexPoly(arr, cnt, [255, 255, 255])
            final_contours.append(cnt)
    #cv2.imshow('arr', arr)
    #k = cv2.waitKey(0)
    return arr
项目:headlights    作者:Team395    | 项目源码 | 文件源码
def diagContour(image):
     #Find contours in the image the first and last returns dont matter so the _ is just a placeholder to ignore them
    _, contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #The contouring operation does some weird stuff to the image so this line just fills the whole thing with black
    image.fill(0)
    boundingRect = []
    firstFail = []
    #Loops through all contours bigger than minArea pixels. That number is tweakable and determined by testing
    for j in [i for i in contours if cv2.contourArea(i) > minArea]:
        #br is a (list/tuple)? of the form x, y, width, height where (x,y) is the (top/bottom)? (left/right)? corner
        br = cv2.boundingRect(j)
        if(abs(br[2]/br[3] - INDASPECT) < indAspectTol and cv2.contourArea(j)/(br[2]*br[3]) > covTol):
            boundingRect.append(br)
        else:
            firstFail.append([br, br[2]/br[3], cv2.contourArea(j)/(br[2]*br[3])])
    secondRound = []
    for x in range(0, len(boundingRect)):
        for y in range(x+1, len(boundingRect)):
            i = boundingRect[x]
            j = boundingRect[y]
            secondRound.append([(x,y,i,j), (abs(i[1]-j[1]), i[3]/2), abs(i[0]-j[0])/i[1]])
    for x in secondRound:
        if(x[1][0] < x[1][1] and x[2] - GRPASPECT < grpAspectTol):
            return [x[0][2], x[0][3]]
        return None;
项目:DoNotSnap    作者:AVGInnovationLabs    | 项目源码 | 文件源码
def findEllipses(edges):
    contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    ellipseMask = np.zeros(edges.shape, dtype=np.uint8)
    contourMask = np.zeros(edges.shape, dtype=np.uint8)

    pi_4 = np.pi * 4

    for i, contour in enumerate(contours):
        if len(contour) < 5:
            continue

        area = cv2.contourArea(contour)
        if area <= 100:  # skip ellipses smaller then 10x10
            continue

        arclen = cv2.arcLength(contour, True)
        circularity = (pi_4 * area) / (arclen * arclen)
        ellipse = cv2.fitEllipse(contour)
        poly = cv2.ellipse2Poly((int(ellipse[0][0]), int(ellipse[0][1])), (int(ellipse[1][0] / 2), int(ellipse[1][1] / 2)), int(ellipse[2]), 0, 360, 5)

        # if contour is circular enough
        if circularity > 0.6:
            cv2.fillPoly(ellipseMask, [poly], 255)
            continue

        # if contour has enough similarity to an ellipse
        similarity = cv2.matchShapes(poly.reshape((poly.shape[0], 1, poly.shape[1])), contour, cv2.cv.CV_CONTOURS_MATCH_I2, 0)
        if similarity <= 0.2:
            cv2.fillPoly(contourMask, [poly], 255)

    return ellipseMask, contourMask
项目:pyku    作者:dubvulture    | 项目源码 | 文件源码
def extract_corners(self, image):
        """
        Find the 4 corners of a binary image
        :param image: binary image
        :return: 4 main vertices or None
        """
        cnts, _ = cv2.findContours(image.copy(),
                                   cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)[-2:]
        cnt = cnts[0]
        _, _, h, w = cv2.boundingRect(cnt)
        epsilon = min(h, w) * 0.5
        o_vertices = cv2.approxPolyDP(cnt, epsilon, True)
        vertices = cv2.convexHull(o_vertices, clockwise=True)
        vertices = self.correct_vertices(vertices)

        if self.debug:
            temp = cv2.cvtColor(image.copy(), cv2.COLOR_GRAY2BGR)
            cv2.drawContours(temp, cnts, -1, (0, 255, 0), 10)
            cv2.drawContours(temp, o_vertices, -1, (255, 0, 0), 30)
            cv2.drawContours(temp, vertices, -1, (0, 0, 255), 20)
            self.save2image(temp)

        return vertices
项目:vehicle_brand_classification_CNN    作者:nanoc812    | 项目源码 | 文件源码
def imgSeg_contour(img, b,g,r, per):
    lower = np.array([0, 0, 0])
    upper = np.array([b,g,r])
    shapeMask = cv2.inRange(img, lower, upper)

    #http://stackoverflow.com/questions/27746089/python-computer-vision-contours-too-many-values-to-unpack
    _, cnts, hierarchy = cv2.findContours(shapeMask.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:4]

    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, per * peri, True) ### 0.04 ###
        if (len(approx) >= 4) and (len(approx) < 6):
            break
    return approx
项目:Millennium-Eye    作者:Elysium1937    | 项目源码 | 文件源码
def shapeFiltering(img):
    contours = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]

    if len(contours) == 0:
        print "shapeFiltering: Error, no contours found"
        return 1

    good_shape = []

    for c in contours:
        x,y,w,h = cv2.boundingRect(c)
        #if h == 0:
        #    continue
        ratio = w / h
        ratio_grade = ratio / (TMw / TMh)
        if 0.2 < ratio_grade < 1.8:
            good_shape.append(c)

    return good_shape
项目:SummerProject_MacularDegenerationDetection    作者:WDongYuan    | 项目源码 | 文件源码
def EdgeDetection(img):
    img = cv2.fastNlMeansDenoising(img,None,3,7,21)
    _,img = cv2.threshold(img,30,255,cv2.THRESH_TOZERO)
    denoise_img = img
    laplacian = cv2.Laplacian(img,cv2.CV_64F)
    sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)  # x
    sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)  # y
    canny = cv2.Canny(img,100,200)
    contour_image, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    return {"denoise":denoise_img,"laplacian":laplacian,"canny":canny,"sobely":sobely,"sobelx":sobelx,"contour":contour_image}

# GrayScale Image Convertor
# https://extr3metech.wordpress.com
项目:SummerProject_MacularDegenerationDetection    作者:WDongYuan    | 项目源码 | 文件源码
def EdgeDetection(img):
    img = cv2.fastNlMeansDenoising(img,None,3,7,21)
    _,img = cv2.threshold(img,30,255,cv2.THRESH_TOZERO)
    denoise_img = img
    laplacian = cv2.Laplacian(img,cv2.CV_64F)
    sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)  # x
    sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)  # y
    canny = cv2.Canny(img,100,200)
    contour_image, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    return {"denoise":denoise_img,"laplacian":laplacian,"canny":canny,"sobely":sobely,"sobelx":sobelx,"contour":contour_image}

# GrayScale Image Convertor
# https://extr3metech.wordpress.com
项目:CE264-Computer_Vision    作者:RobinCPC    | 项目源码 | 文件源码
def find_contour(self, img_src, Rxmin, Rymin, Rxmax, Rymax):
        cv2.rectangle(img_src, (Rxmax, Rymax), (Rxmin, Rymin), (0, 255, 0), 0)
        crop_res = img_src[Rymin: Rymax, Rxmin:Rxmax]
        grey = cv2.cvtColor(crop_res, cv2.COLOR_BGR2GRAY)

        _, thresh1 = cv2.threshold(grey, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

        cv2.imshow('Thresh', thresh1)
        contours, hierchy = cv2.findContours(thresh1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

        # draw contour on threshold image
        if len(contours) > 0:
            cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)

        return contours, crop_res


# Check ConvexHull  and Convexity Defects
项目:kaggle-dstl-satellite-imagery-feature-detection    作者:u1234x1234    | 项目源码 | 文件源码
def polygonize_cv(mask, epsilon=1., min_area=10.):
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
    # create approximate contours to have reasonable submission size
    approx_contours = [cv2.approxPolyDP(cnt, epsilon, True)
                       for cnt in contours]
    approx_contours = contours
    if not contours:
        return MultiPolygon()
    # now messy stuff to associate parent and child contours
    cnt_children = defaultdict(list)
    child_contours = set()
    assert hierarchy.shape[0] == 1
    # http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
    for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
        if parent_idx != -1:
            child_contours.add(idx)
            cnt_children[parent_idx].append(approx_contours[idx])
    # create actual polygons filtering by area (removes artifacts)
    all_polygons = []
    for idx, cnt in enumerate(approx_contours):
        if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
            assert cnt.shape[1] == 1
            poly = Polygon(
                shell=cnt[:, 0, :],
                holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
                       if cv2.contourArea(c) >= min_area])
            all_polygons.append(poly)
    # approximating polygons might have created invalid ones, fix them
    all_polygons = MultiPolygon(all_polygons)
    if not all_polygons.is_valid:
        all_polygons = all_polygons.buffer(0)
        # Sometimes buffer() converts a simple Multipolygon to just a Polygon,
        # need to keep it a Multi throughout
        if all_polygons.type == 'Polygon':
            all_polygons = MultiPolygon([all_polygons])
    return all_polygons
项目:OpenAI_Challenges    作者:AlwaysLearningDeeper    | 项目源码 | 文件源码
def process_img(img):
    original_image=img
    processed_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    processed_img = cv2.Canny(processed_img, threshold1=200, threshold2=300)
    processed_img = cv2.GaussianBlur(processed_img, (3,3), 0 )
    copy=processed_img
    vertices = np.array([[30, 240], [30, 100], [195, 100], [195, 240]])
    processed_img = roi(processed_img, np.int32([vertices]))
    verticesP = np.array([[30, 270], [30, 230], [197, 230], [197, 270]])
    platform = roi(copy, np.int32([verticesP]))
    #                       edges
    #lines = cv2.HoughLinesP(platform, 1, np.pi/180, 180,np.array([]), 3, 2)
    #draw_lines(processed_img,lines)
    #draw_lines(original_image,lines)

    #Platform lines
    #imgray = cv2.cvtColor(platform,cv2.COLOR_BGR2GRAY)
    ret,thresh = cv2.threshold(platform,127,255,0)
    im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
    cv2.drawContours(original_image, contours, -1, (0,255,0), 3)
    try:
        platformpos=contours[0][0][0]
    except:
        platformpos=[[0]]
    circles = cv2.HoughCircles(processed_img, cv2.HOUGH_GRADIENT, 1, 20,
                               param1=90, param2=5, minRadius=1, maxRadius=3)

    ballpos=draw_circles(original_image,circles=circles)

    return processed_img,original_image,platform,platformpos,ballpos
项目:piwall-cvtools    作者:infinnovation    | 项目源码 | 文件源码
def cannyThresholding(self, contour_retrieval_mode = cv2.RETR_LIST):
        '''
        contour_retrieval_mode is passed through as second argument to cv2.findContours
        '''

        # Attempt to match edges found in blue, green or red channels : collect all
        channel = 0
        for gray in cv2.split(self.img):
            channel += 1
            print('channel %d ' % channel)
            title = self.tgen.next('channel-%d' % channel)
            if self.show: ImageViewer(gray).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
            found = {}
            for thrs in xrange(0, 255, 26):
                print('Using threshold %d' % thrs)
                if thrs == 0:
                    print('First step')
                    bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                    title = self.tgen.next('canny-%d' % channel)
                    if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                    bin = cv2.dilate(bin, None)
                    title = self.tgen.next('canny-dilate-%d' % channel)
                    if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                else:
                    retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
                    title = self.tgen.next('channel-%d-threshold-%d' % (channel, thrs))
                    if self.show: ImageViewer(bin).show(window='Next threshold (n to continue)', destroy = self.destroy, info = self.info, thumbnailfn = title)
                bin, contours, hierarchy = cv2.findContours(bin, contour_retrieval_mode, cv2.CHAIN_APPROX_SIMPLE)
                title = self.tgen.next('channel-%d-threshold-%d-contours' % (channel, thrs))
                if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                if contour_retrieval_mode == cv2.RETR_LIST or contour_retrieval_mode == cv2.RETR_EXTERNAL:
                    filteredContours = contours
                else:
                    filteredContours = []
                    h = hierarchy[0]
                    for component in zip(contours, h):
                        currentContour = component[0]
                        currentHierarchy = component[1]
                        if currentHierarchy[3] < 0:
                            # Found the outermost parent component
                            filteredContours.append(currentContour)
                    print('Contours filtered.   Input %d  Output %d' % (len(contours), len(filteredContours)))
                    time.sleep(5)
                for cnt in filteredContours:
                    cnt_len = cv2.arcLength(cnt, True)
                    cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
                    cnt_len = len(cnt)
                    cnt_area = cv2.contourArea(cnt)
                    cnt_isConvex = cv2.isContourConvex(cnt)
                    if cnt_len == 4 and (cnt_area > self.area_min and cnt_area < self.area_max)  and cnt_isConvex:
                        cnt = cnt.reshape(-1, 2)
                        max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                        if max_cos < self.cos_limit :
                            sq = Square(cnt, cnt_area, cnt_isConvex, max_cos)
                            self.squares.append(sq)
                        else:
                            #print('dropped a square with max_cos %f' % max_cos)
                            pass
                found[thrs] = len(self.squares)
                print('Found %d quadrilaterals with threshold %d' % (len(self.squares), thrs))
项目:ATX    作者:NetEaseGame    | 项目源码 | 文件源码
def diff_rect(img1, img2, pos=None):
    """find counters include pos in differences between img1 & img2 (cv2 images)"""
    diff = cv2.absdiff(img1, img2)
    diff = cv2.GaussianBlur(diff, (3, 3), 0)
    edges = cv2.Canny(diff, 100, 200)
    _, thresh = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY)
    contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    if not contours:
        return None
    contours.sort(key=lambda c: len(c))
    # no pos provide, just return the largest different area rect
    if pos is None:
        cnt = contours[-1]
        x0, y0, w, h = cv2.boundingRect(cnt)
        x1, y1 = x0+w, y0+h
        return (x0, y0, x1, y1)
    # else the rect should contain the pos
    x, y = pos
    for i in range(len(contours)):
        cnt = contours[-1-i]
        x0, y0, w, h = cv2.boundingRect(cnt)
        x1, y1 = x0+w, y0+h
        if x0 <= x <= x1 and y0 <= y <= y1:
            return (x0, y0, x1, y1)
项目:DeepFryBot    作者:asdvek    | 项目源码 | 文件源码
def find_chars(img):
    gray = np.array(img.convert("L"))
    ret, mask = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
    image_final = cv2.bitwise_and(gray, gray, mask=mask)
    ret, new_img = cv2.threshold(image_final, 180, 255, cv2.THRESH_BINARY_INV)
    kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
    dilated = cv2.dilate(new_img, kernel, iterations=1)
    # Image.fromarray(dilated).save('out.png') # for debugging
    _, contours, hierarchy = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

    coords = []
    for contour in contours:
        # get rectangle bounding contour
        [x, y, w, h] = cv2.boundingRect(contour)
        # ignore large chars (probably not chars)
        if w > 70 and h > 70:
            continue
        coords.append((x, y, w, h))
    return coords


# find list of eye coordinates in image
项目:cervix-roi-segmentation-by-unet    作者:scottykwok    | 项目源码 | 文件源码
def cropCircle(img, resize=None):
    if resize:
        if (img.shape[0] > img.shape[1]):
            tile_size = (int(img.shape[1] * resize / img.shape[0]), resize)
        else:
            tile_size = (resize, int(img.shape[0] * resize / img.shape[1]))
        img = cv2.resize(img, dsize=tile_size, interpolation=cv2.INTER_CUBIC)
    else:
        tile_size = img.shape

    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY);
    _, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY)

    _, contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

    main_contour = sorted(contours, key=cv2.contourArea, reverse=True)[0]

    ff = np.zeros((gray.shape[0], gray.shape[1]), 'uint8')
    cv2.drawContours(ff, main_contour, -1, 1, 15)
    ff_mask = np.zeros((gray.shape[0] + 2, gray.shape[1] + 2), 'uint8')
    cv2.floodFill(ff, ff_mask, (int(gray.shape[1] / 2), int(gray.shape[0] / 2)), 1)

    rect = maxRect(ff)
    rectangle = [min(rect[0], rect[2]), max(rect[0], rect[2]), min(rect[1], rect[3]), max(rect[1], rect[3])]
    img_crop = img[rectangle[0]:rectangle[1], rectangle[2]:rectangle[3]]
    cv2.rectangle(ff, (min(rect[1], rect[3]), min(rect[0], rect[2])), (max(rect[1], rect[3]), max(rect[0], rect[2])), 3,
                  2)

    return [img_crop, rectangle, tile_size]
项目:Yugioh-bot    作者:will7200    | 项目源码 | 文件源码
def test_initial_pass_through_compare(self):
        original = cv2.imread(os.path.join(self.provider.assets, "start_screen.png"))
        against = self.provider.get_img_from_screen_shot()
        wrong = cv2.imread(os.path.join(self.provider.assets, "battle.png"))

        # convert the images to grayscale
        original = mask_image([127], [255], cv2.cvtColor(original, cv2.COLOR_BGR2GRAY), True)
        against = mask_image([127], [255], cv2.cvtColor(against, cv2.COLOR_BGR2GRAY), True)
        wrong = mask_image([127], [255], cv2.cvtColor(wrong, cv2.COLOR_BGR2GRAY), True)
        # initialize the figure
        (score, diff) = compare_ssim(original, against, full=True)
        diff = (diff * 255).astype("uint8")
        self.assertTrue(score > .90, 'If this is less then .90 the initial compare of the app will fail')
        (score, nothing) = compare_ssim(original, wrong, full=True)
        self.assertTrue(score < .90)
        if self.__debug_pictures__:
            # threshold the difference image, followed by finding contours to
            # obtain the regions of the two input images that differ
            thresh = cv2.threshold(diff, 0, 255,
                                   cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
            cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                                    cv2.CHAIN_APPROX_SIMPLE)
            cnts = cnts[0]
            # loop over the contours
            for c in cnts:
                # compute the bounding box of the contour and then draw the
                # bounding box on both input images to represent where the two
                # images differ
                (x, y, w, h) = cv2.boundingRect(c)
                cv2.rectangle(original, (x, y), (x + w, y + h), (0, 0, 255), 2)
                cv2.rectangle(against, (x, y), (x + w, y + h), (0, 0, 255), 2)
            # show the output images
            diffs = ("Original", original), ("Modified", against), ("Diff", diff), ("Thresh", thresh)
            images = ("Original", original), ("Against", against), ("Wrong", wrong)
            self.setup_compare_images(diffs)
            self.setup_compare_images(images)
项目:PyFRAP    作者:alexblaessle    | 项目源码 | 文件源码
def getContours(img,kernel=(10,10)):

    #Define kernel
    kernel = np.ones(kernel, np.uint8)

    #Open to erode small patches
    thresh = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

    #Close little holes
    thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE,kernel, iterations=4)

    #Find contours
    #contours=skimsr.find_contours(thresh,0)

    thresh=thresh.astype('uint8')
    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)

    areas=[]
    for c in contours:
        areas.append(cv2.contourArea(c))

    return contours,thresh,areas
项目:pycolor_detection    作者:parth1993    | 项目源码 | 文件源码
def findSignificantContours(img, sobel_8u, sobel):
    image, contours, heirarchy = cv2.findContours(sobel_8u, \
                                                  cv2.RETR_EXTERNAL, \
                                                  cv2.CHAIN_APPROX_SIMPLE)
    mask = np.ones(image.shape[:2], dtype="uint8") * 255

    level1 = []
    for i, tupl in enumerate(heirarchy[0]):

        if tupl[3] == -1:
            tupl = np.insert(tupl, 0, [i])
            level1.append(tupl)
    significant = []
    tooSmall = sobel_8u.size * 10 / 100
    for tupl in level1:
        contour = contours[tupl[0]];
        area = cv2.contourArea(contour)
        if area > tooSmall:
            cv2.drawContours(mask, \
                             [contour], 0, (0, 255, 0), \
                             2, cv2.LINE_AA, maxLevel=1)
            significant.append([contour, area])
    significant.sort(key=lambda x: x[1])
    significant = [x[0] for x in significant];
    peri = cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
    mask = sobel.copy()
    mask[mask > 0] = 0
    cv2.fillPoly(mask, significant, 255, 0)
    mask = np.logical_not(mask)
    img[mask] = 0;

    return img
项目:conta-bolas    作者:ocarneiro    | 项目源码 | 文件源码
def draw_contours(self):
        """"""
        # contours all the objects found
        # (findContours changes the source image,
        #  hence copy)
        contours, _ = cv2.findContours(self.mask.copy(),
                                       cv2.RETR_TREE,
                                       cv2.CHAIN_APPROX_SIMPLE)
        # rectangles
        for contour in contours:
            size = cv2.contourArea(contour)
            if size > self.threshold:  # only larger objects
                ret_x, ret_y, ret_w, ret_h = cv2.boundingRect(contour)
                cv2.rectangle(self.display, (ret_x, ret_y),
                              (ret_x+ret_w,
                               ret_y+ret_h),
                              (0, 255, 255), 2)
项目:srcsim2017    作者:ZarjRobotics    | 项目源码 | 文件源码
def find_contours(mask, smooth_factor=0.005):
        """ Find the contours in a given mask """
        border = 5
        # Canny detection breaks down with the edge of the image
        my_mask = cv2.copyMakeBorder(mask, border, border, border, border,
                                     cv2.BORDER_CONSTANT, value=(0, 0, 0))

        my_mask = cv2.cvtColor(my_mask, cv2.COLOR_BGR2GRAY)

        if is_cv2():
            contours, _ = cv2.findContours(my_mask, cv2.RETR_EXTERNAL,
                                           cv2.CHAIN_APPROX_SIMPLE)
        else:
            _, contours, _ = cv2.findContours(my_mask, cv2.RETR_EXTERNAL,
                                              cv2.CHAIN_APPROX_SIMPLE)

        # shift the contours back down
        for contour in contours:
            for pnt in contour:
                if pnt[0][1] > border:
                    pnt[0][1] = pnt[0][1] - border
                else:
                    pnt[0][1] = 0
                if pnt[0][0] > border:
                    pnt[0][0] = pnt[0][0] - border
                else:
                    pnt[0][0] = 0

        closed_contours = []
        for contour in contours:
            epsilon = smooth_factor*cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            area = cv2.contourArea(approx)
            # if they are too small they are not edges
            if area < 200:
                continue
            closed_contours.append(approx)

        return closed_contours
项目:doc2text    作者:jlsutherland    | 项目源码 | 文件源码
def find_components(im, max_components=16):
    """Dilate the image until there are just a few connected components.
    Returns contours for these components."""
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10))
    dilation = dilate(im, kernel, 6)

    count = 21
    n = 0
    sigma = 0.000

    while count > max_components:
        n += 1
        sigma += 0.005
        result = cv2.findContours(dilation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        if len(result) == 3:
            _, contours, hierarchy = result
        elif len(result) == 2:
            contours, hierarchy = result
        possible = find_likely_rectangles(contours, sigma)
        count = len(possible)

    return (dilation, possible, n)
项目:quadrilaterals-rectifier    作者:michal2229    | 项目源码 | 文件源码
def extract_rect(im):
    imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

    ret,thresh = cv2.threshold(imgray, 127, 255, 0)

    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # finding contour with max area
    largest = None
    for cnt in contours:
        if largest == None or cv2.contourArea(cnt) > cv2.contourArea(largest):
            largest = cnt

    peri = cv2.arcLength(largest, True)
    appr = cv2.approxPolyDP(largest, 0.02 * peri, True)

    #cv2.drawContours(im, appr, -1, (0,255,0), 3)
    points_list = [[i[0][0], i[0][1]] for i in appr] 

    left  = sorted(points_list, key = lambda p: p[0])[0:2]
    right = sorted(points_list, key = lambda p: p[0])[2:4]

    print("l " + str(left))
    print("r " + str(right))

    lu = sorted(left, key = lambda p: p[1])[0]
    ld = sorted(left, key = lambda p: p[1])[1]

    ru = sorted(right, key = lambda p: p[1])[0]
    rd = sorted(right, key = lambda p: p[1])[1]

    print("lu " + str(lu))
    print("ld " + str(ld))
    print("ru " + str(ru))
    print("rd " + str(rd))

    lu_ = [ (lu[0] + ld[0])/2, (lu[1] + ru[1])/2 ]
    ld_ = [ (lu[0] + ld[0])/2, (ld[1] + rd[1])/2 ]
    ru_ = [ (ru[0] + rd[0])/2, (lu[1] + ru[1])/2 ]
    rd_ = [ (ru[0] + rd[0])/2, (ld[1] + rd[1])/2 ]

    print("lu_ " + str(lu_))
    print("ld_ " + str(ld_))
    print("ru_ " + str(ru_))
    print("rd_ " + str(rd_))

    src_pts = np.float32(np.array([lu, ru, rd, ld]))
    dst_pts = np.float32(np.array([lu_, ru_, rd_, ld_]))

    h,w,b = im.shape
    H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)

    print("H" + str(H))

    imw =  cv2.warpPerspective(im, H, (w, h))

    return imw[lu_[1]:rd_[1], lu_[0]:rd_[0]] # cropping image
项目:idmatch    作者:maddevsio    | 项目源码 | 文件源码
def recognize_text(original):
    idcard = original
    gray = cv2.cvtColor(idcard, cv2.COLOR_BGR2GRAY)

    # Morphological gradient:
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    opening = cv2.morphologyEx(gray, cv2.MORPH_GRADIENT, kernel)

    # Binarization
    ret, binarization = cv2.threshold(opening, 0.0, 255.0, cv2.THRESH_BINARY | cv2.THRESH_OTSU)

    # Connected horizontally oriented regions
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
    connected = cv2.morphologyEx(binarization, cv2.MORPH_CLOSE, kernel)

    # find countours
    _, contours, hierarchy = cv2.findContours(
        connected, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE
    )
    return contours, hierarchy
项目:idmatch    作者:maddevsio    | 项目源码 | 文件源码
def find_components(edges, max_components=16):
    """Dilate the image until there are just a few connected components.
    Returns contours for these components."""
    # Perform increasingly aggressive dilation until there are just a few
    # connected components.
    count = 21
    dilation = 5
    n = 1
    while count > 16:
        n += 1
        dilated_image = dilate(edges, N=3, iterations=n)
        _, contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        count = len(contours)
    #print dilation
    #Image.fromarray(edges).show()
    #Image.fromarray(255 * dilated_image).show()
    return contours
项目:gaps    作者:nemanja-m    | 项目源码 | 文件源码
def _find_size_candidates(self, image):
        binary_image = self._filter_image(image)

        _, contours, _ = cv2.findContours(binary_image,
                                          cv2.RETR_LIST,
                                          cv2.CHAIN_APPROX_SIMPLE)

        size_candidates = []
        for contour in contours:
            bounding_rect = cv2.boundingRect(contour)
            contour_area = cv2.contourArea(contour)
            if self._is_valid_contour(contour_area, bounding_rect):
                candidate = (bounding_rect[2] + bounding_rect[3]) / 2
                size_candidates.append(candidate)

        return size_candidates
项目:edison_developing    作者:vincentchung    | 项目源码 | 文件源码
def camera_gesture_trigger():
    # Capture frame-by-frame
    ret, frame = cap.read()
    # Our operations on the frame come here
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray,(5,5),0)
    ret,thresh1 = cv2.threshold(blur,70,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

    contours, hierarchy = cv2.findContours(thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
    max_area=0

    for i in range(len(contours)):
        cnt=contours[i]
        area = cv2.contourArea(cnt)
        if(area>max_area):
            max_area=area
            ci=i
    cnt=contours[ci]
    hull = cv2.convexHull(cnt)
    moments = cv2.moments(cnt)

    cnt = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True)
    hull = cv2.convexHull(cnt,returnPoints = False)

    defects = cv2.convexityDefects(cnt,hull)                    

    if defects is not None:         
        if defects.shape[0] >= 5:
            return 1

    return 0
项目:vision    作者:SouthEugeneRoboticsTeam    | 项目源码 | 文件源码
def get_largest(im, n):
    # Find contours of the shape
    major = cv2.__version__.split('.')[0]
    if major == '3':
        _, contours, _ = cv2.findContours(im.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    else:
        contours, _ = cv2.findContours(im.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Cycle through contours and add area to array
    areas = []
    for c in contours:
        areas.append(cv2.contourArea(c))

    # Sort array of areas by size
    sorted_areas = sorted(zip(areas, contours), key=lambda x: x[0], reverse=True)

    if sorted_areas and len(sorted_areas) >= n:
        # Find nth largest using data[n-1][1]
        return sorted_areas[n - 1][1]
    else:
        return None
项目:Artificial-Potential-Field    作者:vampcoder    | 项目源码 | 文件源码
def classify(img):
    cimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img2 = cv2.medianBlur(cimg, 13)

    ret, thresh1 = cv2.threshold(cimg, 100, 120, cv2.THRESH_BINARY)
    t2 = copy.copy(thresh1)

    x, y = thresh1.shape
    arr = np.zeros((x, y, 3), np.uint8)
    final_contours = []
    image, contours, hierarchy = cv2.findContours(t2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #cv2.imshow('image', image)
    #k = cv2.waitKey(0)
    for i in range(len(contours)):
        cnt = contours[i]
        if cv2.contourArea(cnt) > 35000 and cv2.contourArea(cnt) < 15000:
            cv2.drawContours(img, [cnt], -1, [0, 255, 255])
            cv2.fillConvexPoly(arr, cnt, [255, 255, 255])
            final_contours.append(cnt)
    cv2.imshow('arr', arr)
    k = cv2.waitKey(0)
    return arr
项目:rosreestr2coord    作者:rendrom    | 项目源码 | 文件源码
def get_image_xy_corner(self):
        """get ?artesian coordinates from raster"""
        import cv2

        if not self.image_path:
            return False
        image_xy_corners = []
        img = cv2.imread(self.image_path, cv2.IMREAD_GRAYSCALE)
        imagem = (255 - img)

        try:
            ret, thresh = cv2.threshold(imagem, 10, 128, cv2.THRESH_BINARY)
            try:
                contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            except Exception:
                im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)

            hierarchy = hierarchy[0]
            hierarhy_contours = [[] for _ in range(len(hierarchy))]
            for fry in range(len(contours)):
                currentContour = contours[fry]
                currentHierarchy = hierarchy[fry]
                cc = []
                # epsilon = 0.0005 * cv2.arcLength(contours[len(contours) - 1], True)
                approx = cv2.approxPolyDP(currentContour, self.epsilon, True)
                if len(approx) > 2:
                    for c in approx:
                        cc.append([c[0][0], c[0][1]])
                    parent_index = currentHierarchy[3]
                    index = fry if parent_index < 0 else parent_index
                    hierarhy_contours[index].append(cc)

            image_xy_corners = [c for c in hierarhy_contours if len(c) > 0]
            return image_xy_corners
        except Exception as ex:
            self.error(ex)
        return image_xy_corners
项目:Pacbot    作者:HarvardURC    | 项目源码 | 文件源码
def _detect_bot(self, hsv_image):
        BOT_MIN = np.array([28,8,100], np.uint8)
        BOT_MAX = np.array([32,255,255], np.uint8)

        thresholded_image = cv2.inRange(hsv_image, BOT_MIN, BOT_MAX)
        thresholded_image = cv2.medianBlur(thresholded_image, 15)

        _, contours, hierarchy = cv2.findContours(thresholded_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        if not contours:
            (bot_x, bot_y) = (-1000,-1000)
        else:
            bot = contours[0]
            M = cv2.moments(bot)
            if len(bot) > 2:
                bot_x = int(M['m10']/M['m00'])
                bot_y = int(M['m01']/M['m00'])
            else:
                (bot_x, bot_y) = (-1000,-1000)

        return thresholded_image, (bot_x, bot_y)
项目:histonets-cv    作者:sul-cidr    | 项目源码 | 文件源码
def remove_blobs(image, min_area=0, max_area=sys.maxsize, threshold=128,
                 method='8-connected', return_mask=False):
    """Binarize image using threshold, and remove (turn into black)
    blobs of connected pixels of white of size bigger or equal than
    min_area but smaller or equal than max_area from the original image,
    returning it afterward."""
    method = method.lower()
    if method == '4-connected':
        method = cv2.LINE_4
    elif method in ('16-connected', 'antialiased'):
        method = cv2.LINE_AA
    else:  # 8-connected
        method = cv2.LINE_8
    mono_image = binarize_image(image, method='boolean', threshold=threshold)
    _, all_contours, _ = cv2.findContours(mono_image, cv2.RETR_LIST,
                                          cv2.CHAIN_APPROX_SIMPLE)
    contours = np.array([contour for contour in all_contours
                         if min_area <= cv2.contourArea(contour) <= max_area])
    mask = np.ones(mono_image.shape, np.uint8)
    cv2.drawContours(mask, contours, -1, 0, -1, lineType=method)
    return image, 255 * mask
项目:headlights    作者:Team395    | 项目源码 | 文件源码
def contourImg(image):
    #Find contours in the image the first and last returns dont matter so the _ is just a placeholder to ignore them
    _, contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #The contouring operation does some weird stuff to the image so this line just fills the whole thing with black
    image.fill(0)
    boundingRect = []
    #Loops through all contours bigger than minArea pixels. That number is tweakable and determined by testing
    for j in [i for i in contours if cv2.contourArea(i) > minArea]:
        #br is a (list/tuple)? of the form x, y, width, height where (x,y) is the (top/bottom)? (left/right)? corner
        br = cv2.boundingRect(j)
        if(abs(br[2]/br[3] - INDASPECT) < indAspectTol and cv2.contourArea(j)/(br[2]*br[3]) > covTol):
            boundingRect.append(br)
    for x in range(0, len(boundingRect)):
        for y in range(x+1, len(boundingRect)):
            i = boundingRect[x]
            j = boundingRect[y]
            if(abs(i[1]-j[1]) < i[3]/2) and abs(abs(i[0]-j[0])/i[1] - GRPASPECT) < grpAspectTol:
                return [createRectCnt(i), createRectCnt(j)]
    return None
项目:headlights    作者:Team395    | 项目源码 | 文件源码
def diagContour(image):
     #Find contours in the image the first and last returns dont matter so the _ is just a placeholder to ignore them
    _, contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #The contouring operation does some weird stuff to the image so this line just fills the whole thing with black
    image.fill(0)
    boundingRect = []
    firstFail = []
    #Loops through all contours bigger than minArea pixels. That number is tweakable and determined by testing
    for j in [i for i in contours if cv2.contourArea(i) > minArea]:
        #br is a (list/tuple)? of the form x, y, width, height where (x,y) is the (top/bottom)? (left/right)? corner
        br = cv2.boundingRect(j)
        if(abs(br[2]/br[3] - INDASPECT) < indAspectTol and cv2.contourArea(j)/(br[2]*br[3]) > covTol):
            boundingRect.append(br)
        else:
            firstFail.append([br, br[2]/br[3], cv2.contourArea(j)/(br[2]*br[3])])
    secondRound = []
    for x in range(0, len(boundingRect)):
        for y in range(x+1, len(boundingRect)):
            i = boundingRect[x]
            j = boundingRect[y]
            secondRound.append([(x,y,i,j), (abs(i[1]-j[1]), i[3]/2), abs(i[0]-j[0])/i[1]])
    for x in secondRound:
        if(x[1][0] < x[1][1] and x[2] - GRPASPECT < grpAspectTol):
            return firstFail, secondRound, [createRectCnt(x[0][2]), createRectCnt(x[0][3])]
    return firstFail, secondRound, None
项目:Vehicle-Logo-Recognition    作者:xinyuexy    | 项目源码 | 文件源码
def plateDetect(img,img2):
    '''?????????????????'''
    im2, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    for con in contours:
        x,y,w,h=cv2.boundingRect(con)
        area=w*h
        ratio=w/h
        if ratio>2 and ratio<4 and area>=2000 and area<=25000:
            logo_y1=max(0,int(y-h*3.0))
            logo_y2=y
            logo_x1=x
            logo_x2=x+w
            img_logo=img2.copy()
            logo=img_logo[logo_y1:logo_y2,logo_x1:logo_x2]
            cv2.imwrite('./logo1.jpg',logo)
            cv2.rectangle(img2,(x,y),(x+w,y+h),(255,0,0),2)
            cv2.rectangle(img2,(logo_x1,logo_y1),(logo_x2,logo_y2),(0,255,0),2)
            global plate
            plate=[x,y,w,h]
            #?????????
            return logo
项目:Vehicle-Logo-Recognition    作者:xinyuexy    | 项目源码 | 文件源码
def logoDetect(img,imgo):
    '''???????????????'''
    imglogo=imgo.copy()
    img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    img=cv2.resize(img,(2*img.shape[1],2*img.shape[0]),interpolation=cv2.INTER_CUBIC)
    #img=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,-3)
    ret,img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    #img=cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize = 9)
    img=cv2.Canny(img,100,200)
    element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    img = cv2.dilate(img, element2,iterations = 1)
    img = cv2.erode(img, element1, iterations = 3)
    img = cv2.dilate(img, element2,iterations = 3)

    #????
    im2, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    tema=0
    result=[]
    for con in contours:
        x,y,w,h=cv2.boundingRect(con)
        area=w*h
        ratio=max(w/h,h/w)
        if area>300 and area<20000 and ratio<2:
            if area>tema:
                tema=area
                result=[x,y,w,h]
                ratio2=ratio
    #?????????????????,??????????
    logo2_X=[int(result[0]/2+plate[0]-3),int(result[0]/2+plate[0]+result[2]/2+3)]
    logo2_Y=[int(result[1]/2+max(0,plate[1]-plate[3]*3.0)-3),int(result[1]/2+max(0,plate[1]-plate[3]*3.0)+result[3]/2)+3]
    cv2.rectangle(img,(result[0],result[1]),(result[0]+result[2],result[1]+result[3]),(255,0,0),2)
    cv2.rectangle(imgo,(logo2_X[0],logo2_Y[0]),(logo2_X[1],logo2_Y[1]),(0,0,255),2)
    print tema,ratio2,result
    logo2=imglogo[logo2_Y[0]:logo2_Y[1],logo2_X[0]:logo2_X[1]]
    cv2.imwrite('./logo2.jpg',logo2)

    return img
项目:pictureflow    作者:mentum    | 项目源码 | 文件源码
def apply(self, item, threshold):

        img = item.img_mat

        img[img > 0] = 255
        _, contours, _ = cv2.findContours(img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

        valid_contours = []

        for contour in contours:
            max_x = contour[:, :, 0].max()
            min_x = contour[:, :, 0].min()

            max_y = contour[:, :, 1].max()
            min_y = contour[:, :, 1].min()

            if (max_x - min_x) * (max_y - min_y) > threshold:
                valid_contours.append(contour)

        yield valid_contours
项目:PAN-Card-OCR    作者:dilippuri    | 项目源码 | 文件源码
def find_components(edges, max_components=16):
    """Dilate the image until there are just a few connected components.

    Returns contours for these components."""
    # Perform increasingly aggressive dilation until there are just a few
    # connected components.
    count = 21
    dilation = 5
    n = 1
    while count > 16:
        n += 1
        dilated_image = dilate(edges, N=3, iterations=n)
        contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        count = len(contours)
    #print dilation
    #Image.fromarray(edges).show()
    #Image.fromarray(255 * dilated_image).show()
    return contours
项目:Farmbot_GeneralAP    作者:SpongeYao    | 项目源码 | 文件源码
def findContours(arg_img,arg_canvas, arg_MinMaxArea=False, arg_debug= False):
    image= arg_img.copy()
    #print image
    canvas= arg_canvas.copy()
    if len(image)==3:
        image = cv2.cvtColor(self.image, cv2.COLOR_GRAY2BGR)
    if sys.version_info.major == 2: 
        ctrs, hier = cv2.findContours(image.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    else:
        _, ctrs, hier = cv2.findContours(image.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    if arg_MinMaxArea is not False:
        ctrs = filter(lambda x : arg_MinMaxArea[1]> cv2.contourArea(x) > arg_MinMaxArea[0] , ctrs)

    print '>>> ', len(ctrs)
    for ctr in ctrs:
        print 'Area: ', cv2.contourArea(ctr)
        cv2.drawContours(canvas, [ctr], 0, (0, 128, 255), 3)
    if arg_debug:
        cv2.imwrite('Debug/debug_findContours.jpg',canvas)
    return canvas
项目:Farmbot_GeneralAP    作者:SpongeYao    | 项目源码 | 文件源码
def get_contour(self, arg_frame, arg_export_index, arg_export_path, arg_export_filename, arg_binaryMethod):
        # Otsu's thresholding after Gaussian filtering
        tmp = cv2.cvtColor(arg_frame, cv2.COLOR_RGB2GRAY)
        blur = cv2.GaussianBlur(tmp,(5,5),0)
        if arg_binaryMethod== 0:
            ret, thresholdedImg= cv2.threshold(blur.copy() , self.threshold_graylevel, 255 , 0)
        elif arg_binaryMethod == 1:
            ret,thresholdedImg = cv2.threshold(blur.copy(),0 ,255 ,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
        elif arg_binaryMethod== 2:
            thresholdedImg = cv2.adaptiveThreshold(blur.copy(),255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,0)

        result = cv2.cvtColor(thresholdedImg, cv2.COLOR_GRAY2RGB)
        ctrs, hier = cv2.findContours(thresholdedImg, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        ctrs = filter(lambda x : cv2.contourArea(x) > self.threshold_size , ctrs)

        rects = [[cv2.boundingRect(ctr) , ctr] for ctr in ctrs]

        for rect , cntr in rects:
            cv2.drawContours(result, [cntr], 0, (0, 128, 255), 3)
        if arg_export_index:
            cv2.imwrite(arg_export_path+ arg_export_filename+'.jpg', result)
        print "Get Contour success"
        return result