我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用cv2.morphologyEx()。
def __bound_contours(roi): """ returns modified roi(non-destructive) and rectangles that founded by the algorithm. @roi region of interest to find contours @return (roi, rects) """ roi_copy = roi.copy() roi_hsv = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV) # filter black color mask1 = cv2.inRange(roi_hsv, np.array([0, 0, 0]), np.array([180, 255, 125])) mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))) mask1 = cv2.Canny(mask1, 100, 300) mask1 = cv2.GaussianBlur(mask1, (1, 1), 0) mask1 = cv2.Canny(mask1, 100, 300) # mask1 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))) # Find contours for detected portion of the image im2, cnts, hierarchy = cv2.findContours(mask1.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # get largest five contour area rects = [] for c in cnts: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True) x, y, w, h = cv2.boundingRect(approx) if h >= 15: # if height is enough # create rectangle for bounding rect = (x, y, w, h) rects.append(rect) cv2.rectangle(roi_copy, (x, y), (x+w, y+h), (0, 255, 0), 1); return (roi_copy, rects)
def MoG2(vid, min_thresh=800, max_thresh=10000): ''' Args : Video object and threshold parameters Returns : None ''' cap = cv2.VideoCapture(vid) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) fgbg = cv2.createBackgroundSubtractorMOG2() connectivity = 4 while(cap.isOpened()): ret, frame = cap.read() if not ret: break fgmask = fgbg.apply(frame) fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) output = cv2.connectedComponentsWithStats( fgmask, connectivity, cv2.CV_32S) for i in range(output[0]): if output[2][i][4] >= min_thresh and output[2][i][4] <= max_thresh: cv2.rectangle(frame, (output[2][i][0], output[2][i][1]), ( output[2][i][0] + output[2][i][2], output[2][i][1] + output[2][i][3]), (0, 255, 0), 2) cv2.imshow('detection', frame) cap.release() cv2.destroyAllWindows()
def select_largest_obj(self, img_bin, lab_val=255, fill_holes=False, smooth_boundary=False, kernel_size=15): '''Select the largest object from a binary image and optionally fill holes inside it and smooth its boundary. Args: img_bin (2D array): 2D numpy array of binary image. lab_val ([int]): integer value used for the label of the largest object. Default is 255. fill_holes ([boolean]): whether fill the holes inside the largest object or not. Default is false. smooth_boundary ([boolean]): whether smooth the boundary of the largest object using morphological opening or not. Default is false. kernel_size ([int]): the size of the kernel used for morphological operation. Default is 15. Returns: a binary image as a mask for the largest object. ''' n_labels, img_labeled, lab_stats, _ = \ cv2.connectedComponentsWithStats(img_bin, connectivity=8, ltype=cv2.CV_32S) largest_obj_lab = np.argmax(lab_stats[1:, 4]) + 1 largest_mask = np.zeros(img_bin.shape, dtype=np.uint8) largest_mask[img_labeled == largest_obj_lab] = lab_val # import pdb; pdb.set_trace() if fill_holes: bkg_locs = np.where(img_labeled == 0) bkg_seed = (bkg_locs[0][0], bkg_locs[1][0]) img_floodfill = largest_mask.copy() h_, w_ = largest_mask.shape mask_ = np.zeros((h_ + 2, w_ + 2), dtype=np.uint8) cv2.floodFill(img_floodfill, mask_, seedPoint=bkg_seed, newVal=lab_val) holes_mask = cv2.bitwise_not(img_floodfill) # mask of the holes. largest_mask = largest_mask + holes_mask if smooth_boundary: kernel_ = np.ones((kernel_size, kernel_size), dtype=np.uint8) largest_mask = cv2.morphologyEx(largest_mask, cv2.MORPH_OPEN, kernel_) return largest_mask
def __filterRedColor(image_hsv): """ Filters the red color from image_hsv and returns mask. """ mask1 = cv2.inRange(image_hsv, np.array([0, 100, 65]), np.array([10, 255, 255])) mask2 = cv2.inRange(image_hsv, np.array([155, 100, 70]), np.array([179, 255, 255])) mask = mask1 + mask2 mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,2))) mask = cv2.Canny(mask, 50, 100) mask = cv2.GaussianBlur(mask, (13, 13), 0) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,2))) return mask
def skin_detect(self, raw_yrb, img_src): # use median blurring to remove signal noise in YCRCB domain raw_yrb = cv2.medianBlur(raw_yrb, 5) mask_skin = cv2.inRange(raw_yrb, self.mask_lower_yrb, self.mask_upper_yrb) # morphological transform to remove unwanted part kernel = np.ones((5, 5), np.uint8) #mask_skin = cv2.morphologyEx(mask_skin, cv2.MORPH_OPEN, kernel) mask_skin = cv2.dilate(mask_skin, kernel, iterations=2) res_skin = cv2.bitwise_and(img_src, img_src, mask=mask_skin) #res_skin_dn = cv2.fastNlMeansDenoisingColored(res_skin, None, 10, 10, 7,21) return res_skin # Do background subtraction with some filtering
def animpingpong(self): obj=self.Object img=None if not obj.imageFromNode: img = cv2.imread(obj.imageFile) else: print "copy image ..." img = obj.imageNode.ViewObject.Proxy.img.copy() print "cpied" print " loaded" # print (obj.blockSize,obj.ksize,obj.k) # edges = cv2.Canny(img,obj.minVal,obj.maxVal) # color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB) # edges=color # kernel = np.ones((obj.xsize,obj.ysize),np.uint8) opening = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel, iterations = obj.iterations) if True: print "zeige" cv2.imshow(obj.Label,opening) print "gezeigt" else: from matplotlib import pyplot as plt plt.subplot(121),plt.imshow(img,cmap = 'gray') plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(dst,cmap = 'gray') plt.title('Corner Image'), plt.xticks([]), plt.yticks([]) plt.show() print "fertig" self.img=opening
def animpingpong(self): obj=self.Object img=None if not obj.imageFromNode: img = cv2.imread(obj.imageFile) else: print "copy image ..." img = obj.imageNode.ViewObject.Proxy.img.copy() print "cpied" print " loaded" # print (obj.blockSize,obj.ksize,obj.k) # edges = cv2.Canny(img,obj.minVal,obj.maxVal) # color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB) # edges=color # kernel = np.ones((obj.xsize,obj.ysize),np.uint8) closing = cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel, iterations = obj.iterations) if True: print "zeige" cv2.imshow(obj.Label,closing) print "gezeigt" else: from matplotlib import pyplot as plt plt.subplot(121),plt.imshow(img,cmap = 'gray') plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(dst,cmap = 'gray') plt.title('Corner Image'), plt.xticks([]), plt.yticks([]) plt.show() print "fertig" self.img=closing
def getContours(img,kernel=(10,10)): #Define kernel kernel = np.ones(kernel, np.uint8) #Open to erode small patches thresh = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) #Close little holes thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE,kernel, iterations=4) #Find contours #contours=skimsr.find_contours(thresh,0) thresh=thresh.astype('uint8') contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) areas=[] for c in contours: areas.append(cv2.contourArea(c)) return contours,thresh,areas
def recognize_text(original): idcard = original gray = cv2.cvtColor(idcard, cv2.COLOR_BGR2GRAY) # Morphological gradient: kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) opening = cv2.morphologyEx(gray, cv2.MORPH_GRADIENT, kernel) # Binarization ret, binarization = cv2.threshold(opening, 0.0, 255.0, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # Connected horizontally oriented regions kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1)) connected = cv2.morphologyEx(binarization, cv2.MORPH_CLOSE, kernel) # find countours _, contours, hierarchy = cv2.findContours( connected, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE ) return contours, hierarchy
def _extract_arm(self, img): # find center region of image frame (assume center region is 21 x 21 px) center_half = 10 # (=(21-1)/2) center = img[self.height/2 - center_half : self.height/2 + center_half, self.width/2 - center_half : self.width/2 + center_half] # determine median depth value median_val = np.median(center) '''mask the image such that all pixels whose depth values lie within a particular range are gray and the rest are black ''' img = np.where(abs(img-median_val) <= self.abs_depth_dev, 128, 0).astype(np.uint8) # Apply morphology operation to fill small holes in the image kernel = np.ones((5,5), np.uint8) img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) # Find connected regions (to hand) to remove background objects # Use floodfill with a small image area (7 x 7 px) that is set gray color value kernel2 = 3 img[self.height/2-kernel2:self.height/2+kernel2, self.width/2-kernel2:self.width/2+kernel2] = 128 # a black mask to mask the 'non-connected' components black mask = np.zeros((self.height + 2, self.width + 2), np.uint8) floodImg = img.copy() # Use floodFill function to paint the connected regions white cv2.floodFill(floodImg, mask, (self.width/2, self.height/2), 255, flags=(4 | 255 << 8)) # apply a binary threshold to show only connected hand region ret, floodedImg = cv2.threshold(floodImg, 129, 255, cv2.THRESH_BINARY) return floodedImg
def update(dummy=None): sz = cv2.getTrackbarPos('op/size', 'morphology') iters = cv2.getTrackbarPos('iters', 'morphology') opers = cur_mode.split('/') if len(opers) > 1: sz = sz - 10 op = opers[sz > 0] sz = abs(sz) else: op = opers[0] sz = sz*2+1 str_name = 'MORPH_' + cur_str_mode.upper() oper_name = 'MORPH_' + op.upper() st = cv2.getStructuringElement(getattr(cv2, str_name), (sz, sz)) res = cv2.morphologyEx(img, getattr(cv2, oper_name), st, iterations=iters) draw_str(res, (10, 20), 'mode: ' + cur_mode) draw_str(res, (10, 40), 'operation: ' + oper_name) draw_str(res, (10, 60), 'structure: ' + str_name) draw_str(res, (10, 80), 'ksize: %d iters: %d' % (sz, iters)) cv2.imshow('morphology', res)
def remove_noise_and_smooth(file_name): logging.info('Removing noise and smoothening image') img = cv2.imread(file_name, 0) filtered = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, 3) kernel = np.ones((1, 1), np.uint8) opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel) closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel) img = image_smoothening(img) or_image = cv2.bitwise_or(img, closing) return or_image
def simple_feature_size_filter(img, minradius, maxradius): feature_radius_min = minradius | 1 # play with these to see show they affect highlighting of structures of various sizes feature_radius_max = maxradius | 1 if 0: w = feature_radius_min*2 | 1 blurred = cv2.GaussianBlur(img, (w, w), feature_radius_min) w = feature_radius_max*2 | 1 veryblurred = cv2.GaussianBlur(img, (w, w), feature_radius_max) else: s = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (feature_radius_min, feature_radius_min)) blurred = cv2.morphologyEx(img, cv2.MORPH_OPEN, s) s = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (feature_radius_max, feature_radius_max)) veryblurred = cv2.morphologyEx(img, cv2.MORPH_OPEN, s) bandfiltered = blurred - np.minimum(veryblurred, blurred) return bandfiltered
def isInvEmpty(): bag, bagx,bagy = get_bag('bag and coords', 'hsv') # looks for color of empty inv low = np.array([10,46,58]) high= np.array([21,92,82]) # applies mask mask = cv2.inRange(bag, low, high) # removes any noise kernel = np.ones((5,5), np.uint8) closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # looks to see if the inv is all white pixels # returns true, else False if (closing.view() == 255).all(): return True return False
def process_letter(thresh,output): # assign the kernel size kernel = np.ones((2,1), np.uint8) # vertical # use closing morph operation then erode to narrow the image temp_img = cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel,iterations=3) # temp_img = cv2.erode(thresh,kernel,iterations=2) letter_img = cv2.erode(temp_img,kernel,iterations=1) # find contours (contours, _) = cv2.findContours(letter_img.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) # loop in all the contour areas for cnt in contours: x,y,w,h = cv2.boundingRect(cnt) cv2.rectangle(output,(x-1,y-5),(x+w,y+h),(0,255,0),1) return output #processing letter by letter boxing
def process_word(thresh,output): # assign 2 rectangle kernel size 1 vertical and the other will be horizontal kernel = np.ones((2,1), np.uint8) kernel2 = np.ones((1,4), np.uint8) # use closing morph operation but fewer iterations than the letter then erode to narrow the image temp_img = cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel,iterations=2) #temp_img = cv2.erode(thresh,kernel,iterations=2) word_img = cv2.dilate(temp_img,kernel2,iterations=1) (contours, _) = cv2.findContours(word_img.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: x,y,w,h = cv2.boundingRect(cnt) cv2.rectangle(output,(x-1,y-5),(x+w,y+h),(0,255,0),1) return output #processing line by line boxing
def process_line(thresh,output): # assign a rectangle kernel size 1 vertical and the other will be horizontal kernel = np.ones((1,5), np.uint8) kernel2 = np.ones((2,4), np.uint8) # use closing morph operation but fewer iterations than the letter then erode to narrow the image temp_img = cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel2,iterations=2) #temp_img = cv2.erode(thresh,kernel,iterations=2) line_img = cv2.dilate(temp_img,kernel,iterations=5) (contours, _) = cv2.findContours(line_img.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: x,y,w,h = cv2.boundingRect(cnt) cv2.rectangle(output,(x-1,y-5),(x+w,y+h),(0,255,0),1) return output #processing par by par boxing
def _smooth_ball_mask(self, mask): """ The mask created inDetectBallPosition might be noisy. :param mask: The mask to smooth (Image with bit depth 1) :return: The smoothed mask """ # create the disk-shaped kernel for the following image processing, r = 3 kernel = np.ones((2*r, 2*r), np.uint8) for x in range(0, 2*r): for y in range(0, 2*r): if(x - r + 0.5)**2 + (y - r + 0.5)**2 > r**2: kernel[x, y] = 0 # remove noise # see http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) return mask
def SmoothFieldMask(self, mask): # erst Close und dann DILATE führt zu guter Erkennung der Umrandung oben kernel = np.ones((20,20),np.uint8) kernel = np.ones((5,5),np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) #kernel = np.ones((20,20),np.uint8) #mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, kernel) #kernel = np.ones((20,20),np.uint8) mask = cv2.GaussianBlur(mask,(11,11),0) #mask = cv2.morphologyEx(mask, cv2.MORPH_ERODE, kernel) # plt.imshow(cv2.cvtColor(cv2.bitwise_and(self.ImgHSV,self.ImgHSV,mask=mask),cv2.COLOR_HSV2RGB),cmap="gray") # plt.show() return mask
def update_edge_mask(self, previous_mask, previous_line, slope_sign, thrs1, thrs2, debug): lines = cv2.HoughLinesP(self.edge, 1, np.pi / 180, 70, minLineLength = 10, maxLineGap = 200) lines = filter_lines(lines, self.vanishing_height, self.edge.shape[0], slope_sign) self.lines.extend(lines) mask = np.zeros(self.edge.shape, np.uint8) for line in lines: x1,y1,x2,y2 = line cv2.line(mask, (x1,y1),(x2,y2), 255, MASK_WIDTH) mask = cv2.addWeighted(mask, MASK_WEIGHT, previous_mask, 1 - MASK_WEIGHT, 0) #self.current_mask *= int(255.0 / self.current_mask.max()) previous_mask = mask.copy() _, mask = cv2.threshold(mask, 40, 255, cv2.THRESH_BINARY) masked_edges = cv2.morphologyEx(cv2.bitwise_and(self.edge, self.edge, mask = mask), cv2.MORPH_CLOSE, np.array([[1] * EDGE_DILATION] *EDGE_DILATION)) lines2 = cv2.HoughLinesP(masked_edges, 1, np.pi / 180, 70, minLineLength = 10, maxLineGap = 200) lines2 = filter_lines(lines2, self.vanishing_height, self.edge.shape[0], slope_sign) self.lines2.extend(lines2) for line in lines2: x1,y1,x2,y2 = line cv2.line(mask, (x1,y1),(x2,y2), 255, MASK_WIDTH) previous_line[0] = add(previous_line[0], (x2,y2)) previous_line[1] = add(previous_line[1], (x_at_y(self.edge.shape[0]*0.6, x1, y1, x2, y2), self.edge.shape[0]*0.6)) previous_line[0] = scale(previous_line[0], 1.0 / (len(lines2) + 1)) previous_line[1] = scale(previous_line[1], 1.0 / (len(lines2) + 1)) return masked_edges, mask, previous_mask, previous_line
def execute_Morphing(proxy,obj): try: img=obj.sourceObject.Proxy.img.copy() except: img=cv2.imread(__dir__+'/icons/freek.png') ks=obj.kernel kernel = np.ones((ks,ks),np.uint8) if obj.filter == 'dilation': dilation = cv2.dilate(img,kernel,iterations = 1) img=dilation if obj.filter == 'erosion': dilation = cv2.erode(img,kernel,iterations = 1) img=dilation if obj.filter == 'opening': dilation = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) img=dilation if obj.filter == 'closing': dilation = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) img=dilation obj.Proxy.img = img # # property functions for HoughLines #
def denoise_foreground(img, fgmask): img_bw = 255*(fgmask > 5).astype('uint8') se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2)) mask = cv2.morphologyEx(img_bw, cv2.MORPH_CLOSE, se1) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2) mask = np.dstack([mask, mask, mask]) / 255 img_dn = img * mask return img_dn
def filter_smooth_thres(self, RANGE, color): for (lower, upper) in RANGE: lower = np.array(lower, dtype='uint8') upper = np.array(upper, dtype='uint8') mask_bottom = cv2.inRange(self.img_roi_bottom_hsv, lower, upper) mask_top = cv2.inRange(self.img_roi_top_hsv, lower, upper) blurred_bottom = cv2.medianBlur(mask_bottom, 5) blurred_top = cv2.medianBlur(mask_top, 5) # Morphological transformation kernel = np.ones((2, 2), np.uint8) smoothen_bottom = blurred_bottom #cv2.morphologyEx(blurred, cv2.MORPH_OPEN, kernel, iterations=5) smoothen_top = blurred_top # cv2.morphologyEx(blurred, cv2.MORPH_OPEN, kernel, iterations=5) """ if self.debug: cv2.imshow('mask bottom ' + color, mask_bottom) cv2.imshow('blurred bottom' + color, blurred_bottom) cv2.imshow('mask top ' + color, mask_top) cv2.imshow('blurred top' + color, blurred_top) """ return smoothen_bottom, smoothen_top # Gets metadata from our contours
def __call__(self, image): """Returns a foreground mask of the image.""" return cv2.morphologyEx(self.fgbg.apply(image), cv2.MORPH_OPEN, self.strel)
def cv2_morph_close(binary_image, size=5): import cv2 from skimage.morphology import disk kernel = disk(size) result = cv2.morphologyEx(binary_image, cv2.MORPH_CLOSE, kernel) return result
def cv2_morph_open(binary_image, size=5): import cv2 from skimage.morphology import disk kernel = disk(size) result = cv2.morphologyEx(binary_image, cv2.MORPH_OPEN, kernel) return result
def segment(self, im): mask = np.square(im.astype('float32') - self.bgim ).sum(axis=2) / 20 mask = np.clip(mask, 0, 255).astype('uint8') mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, self.kernel) mask = cv2.dilate(mask, self.dilate_k) mask = mask.astype('uint8') return (mask > 10).astype('float32') *255
def closing(mask): assert isinstance(mask, numpy.ndarray), 'mask must be a numpy array' assert mask.ndim == 2, 'mask must be a greyscale image' logger.debug("closing mask of shape {0}".format(mask.shape)) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2) return mask
def morphology(msk): assert isinstance(msk, numpy.ndarray), 'msk must be a numpy array' assert msk.ndim == 2, 'msk must be a greyscale image' kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) msk = cv2.erode(msk, kernel, iterations=1) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) msk = cv2.morphologyEx(msk, cv2.MORPH_CLOSE, kernel) msk[msk < 128] = 0 msk[msk > 127] = 255 return msk
def reduce_noise_edges(im): structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)) opening = cv2.morphologyEx(im, cv2.MORPH_OPEN, structuring_element) maxed_rows = rank_filter(opening, -4, size=(1, 20)) maxed_cols = rank_filter(opening, -4, size=(20, 1)) debordered = np.minimum(np.minimum(opening, maxed_rows), maxed_cols) return debordered
def extract_bv(image): clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) contrast_enhanced_green_fundus = clahe.apply(image) # applying alternate sequential filtering (3 times closing opening) r1 = cv2.morphologyEx(contrast_enhanced_green_fundus, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)), iterations = 1) R1 = cv2.morphologyEx(r1, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)), iterations = 1) r2 = cv2.morphologyEx(R1, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11)), iterations = 1) R2 = cv2.morphologyEx(r2, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11)), iterations = 1) r3 = cv2.morphologyEx(R2, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(23,23)), iterations = 1) R3 = cv2.morphologyEx(r3, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(23,23)), iterations = 1) f4 = cv2.subtract(R3,contrast_enhanced_green_fundus) f5 = clahe.apply(f4) # removing very small contours through area parameter noise removal ret,f6 = cv2.threshold(f5,15,255,cv2.THRESH_BINARY) mask = np.ones(f5.shape[:2], dtype="uint8") * 255 im2, contours, hierarchy = cv2.findContours(f6.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: if cv2.contourArea(cnt) <= 200: cv2.drawContours(mask, [cnt], -1, 0, -1) im = cv2.bitwise_and(f5, f5, mask=mask) ret,fin = cv2.threshold(im,15,255,cv2.THRESH_BINARY_INV) newfin = cv2.erode(fin, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)), iterations=1) # removing blobs of microaneurysm & unwanted bigger chunks taking in consideration they are not straight lines like blood # vessels and also in an interval of area fundus_eroded = cv2.bitwise_not(newfin) xmask = np.ones(image.shape[:2], dtype="uint8") * 255 x1, xcontours, xhierarchy = cv2.findContours(fundus_eroded.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) for cnt in xcontours: shape = "unidentified" peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, 0.04 * peri, False) if len(approx) > 4 and cv2.contourArea(cnt) <= 3000 and cv2.contourArea(cnt) >= 100: shape = "circle" else: shape = "veins" if(shape=="circle"): cv2.drawContours(xmask, [cnt], -1, 0, -1) finimage = cv2.bitwise_and(fundus_eroded,fundus_eroded,mask=xmask) blood_vessels = cv2.bitwise_not(finimage) dilated = cv2.erode(blood_vessels, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7)), iterations=1) #dilated1 = cv2.dilate(blood_vessels, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)), iterations=1) blood_vessels_1 = cv2.bitwise_not(dilated) return blood_vessels_1
def _filter_image(self, image): _, thresh = cv2.threshold(image, 200, 255, cv2.THRESH_BINARY) opened = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, (5, 5), iterations=3) return cv2.bitwise_not(opened)
def threshold(self, img): cv2.cvtColor(img, cv2.COLOR_BGR2HSV, dst=self.hsv) cv2.inRange(self.hsv, self.thresh_low, self.thresh_high, dst=self.bin) cv2.morphologyEx(self.bin, cv2.MORPH_CLOSE, self.morphKernel, dst=self.bin2, iterations=1) if self.draw_thresh: b = (self.bin2 != 0) cv2.copyMakeBorder(self.black, 0, 0, 0, 0, cv2.BORDER_CONSTANT, value=self.RED, dst=self.out) self.out[np.dstack((b, b, b))] = 255 return self.bin2
def CloseInContour( mask, element ): large = 0 result = mask _, contours, _ = cv2.findContours(result,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #find the biggest area c = max(contours, key = cv2.contourArea) closing = cv2.morphologyEx(result, cv2.MORPH_CLOSE, element) for x in range(mask.shape[0]): for y in range(mask.shape[1]): pt = cv2.pointPolygonTest(c, (x, y), True) #pt = cv2.pointPolygonTest(c, (x, y), False) if pt > 3: result[x][y] = closing[x][y] return result.astype(np.float32)
def CloseInContour( mask, element ): large = 0 result = mask _, contours, _ = cv2.findContours(result,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #find the biggest area c = max(contours, key = cv2.contourArea) closing = cv2.morphologyEx(result, cv2.MORPH_CLOSE, element) for x in range(mask.shape[0]): for y in range(mask.shape[1]): #pt = cv2.pointPolygonTest(c, (x, y), True) pt = cv2.pointPolygonTest(c, (x, y), False) if pt == 1: result[x][y] = closing[x][y] return result.astype(np.float32)
def outlining(img): #kernel size kernel_size=3 #------------------------------------------------- #bilateral filter, sharpen, thresh image biblur=cv2.bilateralFilter(img,20,175,175) sharp=cv2.addWeighted(img,1.55,biblur,-0.5,0) ret1,thresh1 = cv2.threshold(sharp,127,255,cv2.THRESH_OTSU) #negative and closed image inv=cv2.bitwise_not(thresh1) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)) closed = cv2.morphologyEx(inv, cv2.MORPH_CLOSE, kernel) return closed
def img_contour_extra(im): # ????? kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(13,7)) bgmask = cv2.morphologyEx(im, cv2.MORPH_CLOSE, kernel) img_show_hook("??????", bgmask) # ?????? # ?????????? im2, contours, hierarchy = cv2.findContours(bgmask.copy(), cv2.RETR_EXTERNAL, #???? cv2.CHAIN_APPROX_SIMPLE) return contours
def maskImg(image): #Convert image from RBG (red blue green) to HSV (hue shade value) maskedImage = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) #Convert image to binary using the predefined color arrays maskedImage = cv2.inRange(maskedImage, lowColor, highColor) #Removes white noise using an open transformation kernel = np.ones((4,4), np.uint8) #maskedImage = cv2.morphologyEx(maskedImage, cv2.MORPH_OPEN, kernel) return maskedImage
def maskImg(image): #Convert image from RBG (red blue green) to HSV (hue shade value) maskedImage = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) #Convert image to binary using the predefined color arrays maskedImage = cv2.inRange(maskedImage, lowColor, highColor) #Removes white noise using an open transformation kernel = np.ones((4,4), np.uint8) #maskedImage = cv2.morphologyEx(maskedImage, cv2.MORPH_OPEN, kernel) return maskedImage #Find and return two matching rectangular contours if they exist, otherwise return none.
def remove_noise(image, kernel=(2, 2)): ''' removes noisy pixels in the area. ''' return cv.morphologyEx(image, cv.MORPH_OPEN, kernel)
def fill(image, kernel=(2, 2)): ''' fill gaps in shapes structure. ''' return cv.morphologyEx(image, cv.MORPH_CLOSE, kernel)
def closing(img, kernel_size): kernel = np.ones((kernel_size, kernel_size), np.uint8) closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) return closing
def opening(img, kernel_size): kernel = np.ones((kernel_size, kernel_size), np.uint8) opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) return opening
def closing(img,kernel_size): kernel = np.ones((kernel_size,kernel_size),np.uint8) closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) return closing
def opening(img,kernel_size): kernel = np.ones((kernel_size,kernel_size),np.uint8) opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) return opening
def detect(self, image, mask = None): floatimage = np.float32(image) fb,fg,fr = cv2.split(floatimage) # red-to-blue channel operation ra = fr + fb rb = fr - fb rb[ra > 0] /= ra[ra > 0] #mi = np.min(rb) #ma = np.max(rb) #rb = np.uint8((rb - mi) / (ma - mi) * 255) # morphology open if self.kernel is None or self.kernel.shape[0] != Configuration.background_rect_size: self.kernel = np.ones((Configuration.background_rect_size, Configuration.background_rect_size), np.uint8) * 255 result = cv2.morphologyEx(rb, cv2.MORPH_OPEN, self.kernel) # background subtraction # homogeneous background image V result = rb - result mi = np.min(result) ma = np.max(result) result = np.uint8((result - mi) / (ma - mi) * 255) # adaptive threshold T T, _ = cv2.threshold(result[mask == 0], 0, 1, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # V(i, j) > T return np.uint8((T - np.float32(result)) <= 0)
def close_result(self, result): return cv2.morphologyEx(result, cv2.MORPH_CLOSE, self.kernel)
def roiMask(image, boundaries): scale = max([1.0, np.average(np.array(image.shape)[0:2] / 400.0)]) shape = (int(round(image.shape[1] / scale)), int(round(image.shape[0] / scale))) small_color = cv2.resize(image, shape, interpolation=cv2.INTER_LINEAR) # reduce details and remove noise for better edge detection small_color = cv2.bilateralFilter(small_color, 8, 64, 64) small_color = cv2.pyrMeanShiftFiltering(small_color, 8, 64, maxLevel=1) small = cv2.cvtColor(small_color, cv2.COLOR_BGR2HSV) hue = small[::, ::, 0] intensity = cv2.cvtColor(small_color, cv2.COLOR_BGR2GRAY) edges = extractEdges(hue, intensity) roi = roiFromEdges(edges) weight_map = weightMap(hue, intensity, edges, roi) _, final_mask = cv2.threshold(roi, 5, 255, cv2.THRESH_BINARY) small = cv2.bitwise_and(small, small, mask=final_mask) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (4, 4)) for (lower, upper) in boundaries: lower = np.array([lower, 80, 50], dtype="uint8") upper = np.array([upper, 255, 255], dtype="uint8") # find the colors within the specified boundaries and apply # the mask mask = cv2.inRange(small, lower, upper) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=3) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1) final_mask = cv2.bitwise_and(final_mask, mask) # blur the mask for better contour extraction final_mask = cv2.GaussianBlur(final_mask, (5, 5), 0) return (final_mask, weight_map, scale)