我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用cv2.adaptiveThreshold()。
def apply_filters(self, image, denoise=False): """ This method is used to apply required filters to the to extracted regions of interest. Every square in a sudoku square is considered to be a region of interest, since it can potentially contain a value. """ # Convert to grayscale source_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Denoise the grayscale image if requested in the params if denoise: denoised_gray = cv2.fastNlMeansDenoising(source_gray, None, 9, 13) source_blur = cv2.GaussianBlur(denoised_gray, BLUR_KERNEL_SIZE, 3) # source_blur = denoised_gray else: source_blur = cv2.GaussianBlur(source_gray, (3, 3), 3) source_thresh = cv2.adaptiveThreshold(source_blur, 255, 0, 1, 5, 2) kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)) source_eroded = cv2.erode(source_thresh, kernel, iterations=1) source_dilated = cv2.dilate(source_eroded, kernel, iterations=1) if ENABLE_PREVIEW_ALL: image_preview(source_dilated) return source_dilated
def execute_Threshold(proxy,obj): try: img=obj.sourceObject.Proxy.img.copy() except: img=cv2.imread(__dir__+'/icons/freek.png') # img = cv2.imread('dave.jpg',0) ?? img = cv2.medianBlur(img,5) img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) if obj.globalThresholding: ret,th1 = cv2.threshold(img,obj.param1,obj.param2,cv2.THRESH_BINARY) obj.Proxy.img = cv2.cvtColor(th1, cv2.COLOR_GRAY2RGB) if obj.adaptiveMeanTresholding: th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\ cv2.THRESH_BINARY,11,2) obj.Proxy.img = cv2.cvtColor(th2, cv2.COLOR_GRAY2RGB) if obj.adaptiveGaussianThresholding: th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,17,2) obj.Proxy.img = cv2.cvtColor(th3, cv2.COLOR_GRAY2RGB)
def find_bibs(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY); binary = cv2.GaussianBlur(gray,(5,5),0) ret,binary = cv2.threshold(binary, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU); #binary = cv2.adaptiveThreshold(binary, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) #ret,binary = cv2.threshold(binary, 190, 255, cv2.THRESH_BINARY); #lapl = cv2.Laplacian(image,cv2.CV_64F) #gray = cv2.cvtColor(lapl, cv2.COLOR_BGR2GRAY); #blurred = cv2.GaussianBlur(lapl,(5,5),0) #ret,binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU); #cv2.imwrite("lapl.jpg", lapl) edges = cv2.Canny(image,175,200) cv2.imwrite("edges.jpg", edges) binary = edges cv2.imwrite("binary.jpg", binary) contours,hierarchy = find_contours(binary) return get_rectangles(contours)
def threshold(im_gray, method): ''' ??????????thresholding??????????? ??????thresholding????????OpenCV?? ''' if method == 'fixed': threshed_im = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY) elif method == 'mean': threshed_im = cv2.adaptiveThreshold(im_gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 15, -22) elif method == 'gaussian': threshed_im = cv2.adaptiveThreshold(im_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 5, 7) else: return None return threshed_im
def adaptive_threshold(image, above_thresh_assigned=255, kind='mean', cell_size=35, c_param=17, thresh_style=cv.THRESH_BINARY_INV): ''' :param kind: specify adaptive method, whether 'mean' or 'gaussian'. :param cell_size: n for the region size (n x n). :param c_param: subtraction constant. :return: a binary version of the input image. ''' if kind == 'mean': method = cv.ADAPTIVE_THRESH_MEAN_C elif kind == 'gaussian': method = cv.ADAPTIVE_THRESH_GAUSSIAN_C else: raise ValueError('Unknown adaptive threshold method.') return cv.adaptiveThreshold(image, above_thresh_assigned, method, thresh_style, cell_size, c_param)
def __convertImagetoBlackWhite(self): self.Image = cv.imread(self.ImagePath, cv.IMREAD_COLOR) self.imageOriginal = self.Image if self.Image is None: print 'some problem with the image' else: print 'Image Loaded' self.Image = cv.cvtColor(self.Image, cv.COLOR_BGR2GRAY) self.Image = cv.adaptiveThreshold( self.Image, 255, # Value to assign cv.ADAPTIVE_THRESH_MEAN_C,# Mean threshold cv.THRESH_BINARY, 11, # Block size of small area 2, # Const to substract ) return self.Image
def to_binary(self, image): """ This method uses Adaptive Thresholding to convert a blurred grayscale image to binary (only black and white). The binary image is required to extract the full sudoku grid from the image. """ if ENABLE_DEBUG: print("DEBUG -- Attempting to apply adaptive threshold" " and convert image to black and white.") try: thresh = cv2.adaptiveThreshold(image, 255, 1, 1, 11, 2) except: if VERBOSE_EXIT: print("ERROR -- Unable to convert the image to black/white." " Please contact the developer at %s and include this" " error and the image you are using." % DEV_EMAIL) exit() if ENABLE_PREVIEW or ENABLE_PREVIEW_ALL: image_preview(thresh) if ENABLE_DEBUG: print("DEBUG -- Image succesfully converted to binary.") return thresh
def find_bib(image): width, height, depth = image.shape gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY); #gray = cv2.equalizeHist(gray) blurred = cv2.GaussianBlur(gray,(5,5),0) debug_output("find_bib_blurred", blurred) #binary = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, blockSize=25, C=0); ret,binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU); #ret,binary = cv2.threshold(blurred, 170, 255, cv2.THRESH_BINARY); debug_output("find_bib_binary", binary) threshold_contours,hierarchy = find_contours(binary) debug_output("find_bib_threshold", binary) edges = cv2.Canny(gray,175,200, 3) edge_contours,hierarchy = find_contours(edges) debug_output("find_bib_edges", edges) contours = threshold_contours + edge_contours debug_output_contours("find_bib_threshold_contours", image, contours) rectangles = get_rectangles(contours) debug_output_contours("find_bib_rectangles", image, rectangles) potential_bibs = [rect for rect in rectangles if is_potential_bib(rect, width*height)] debug_output_contours("find_bib_potential_bibs", image, potential_bibs) ideal_aspect_ratio = 1.0 potential_bibs = sorted(potential_bibs, key = lambda bib: abs(aspect_ratio(bib) - ideal_aspect_ratio)) return potential_bibs[0] if len(potential_bibs) > 0 else np.array([[(0,0)],[(0,0)],[(0,0)],[(0,0)]]) # # Checks that the size and aspect ratio of the contour is appropriate for a bib. #
def thresholding(img_grey): """ This functions creates binary images using thresholding :param img_grey: greyscale image :return: binary image """ # # Adaptive Gaussian # img_binary = cv.adaptiveThreshold(img_grey, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 2) # Otsu's thresholding after Gaussian filtering blur = cv.GaussianBlur(img_grey, (5, 5), 0) ret3, img_binary = cv.threshold(blur, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) # invert black = 255 ret, thresh1 = cv.threshold(img_binary, 127, 255, cv.THRESH_BINARY_INV) return thresh1
def thresholding(img_grey): """ This functions creates binary images using thresholding :param img_grey: greyscale image :return: binary image """ # # Global # ret1, thresh1 = cv.threshold(img_grey, 127, 255, cv.THRESH_BINARY_INV) # show_img(thresh1) # # # Adaptive Mean # img_binary = cv.adaptiveThreshold(img_grey, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 2) # ret2, thresh2 = cv.threshold(img_binary, 127, 255, cv.THRESH_BINARY_INV) # show_img(thresh2) # # # Adaptive Gaussian # img_binary = cv.adaptiveThreshold(img_grey, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 2) # ret3, thresh3 = cv.threshold(img_binary, 127, 255, cv.THRESH_BINARY_INV) # show_img(thresh3) # Otsu's thresholding after Gaussian filtering blur = cv.GaussianBlur(img_grey, (5, 5), 0) ret4, img_otsu = cv.threshold(blur, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) ret4, thresh4 = cv.threshold(img_otsu, 127, 255, cv.THRESH_BINARY_INV) # show_img(thresh4) return thresh4
def run(self, ips, snap, img, para = None): med = cv2.ADAPTIVE_THRESH_MEAN_C if para['med']=='mean' else cv2.ADAPTIVE_THRESH_GAUSSIAN_C mtype = cv2.THRESH_BINARY_INV if para['inv'] else cv2.THRESH_BINARY cv2.adaptiveThreshold(snap, para['max'], med, para['inv'], para['size'], para['offset'], dst=img)
def logoDetect(img,imgo): '''???????????????''' imglogo=imgo.copy() img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) img=cv2.resize(img,(2*img.shape[1],2*img.shape[0]),interpolation=cv2.INTER_CUBIC) #img=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,-3) ret,img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) #img=cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize = 9) img=cv2.Canny(img,100,200) element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) img = cv2.dilate(img, element2,iterations = 1) img = cv2.erode(img, element1, iterations = 3) img = cv2.dilate(img, element2,iterations = 3) #???? im2, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) tema=0 result=[] for con in contours: x,y,w,h=cv2.boundingRect(con) area=w*h ratio=max(w/h,h/w) if area>300 and area<20000 and ratio<2: if area>tema: tema=area result=[x,y,w,h] ratio2=ratio #?????????????????,?????????? logo2_X=[int(result[0]/2+plate[0]-3),int(result[0]/2+plate[0]+result[2]/2+3)] logo2_Y=[int(result[1]/2+max(0,plate[1]-plate[3]*3.0)-3),int(result[1]/2+max(0,plate[1]-plate[3]*3.0)+result[3]/2)+3] cv2.rectangle(img,(result[0],result[1]),(result[0]+result[2],result[1]+result[3]),(255,0,0),2) cv2.rectangle(imgo,(logo2_X[0],logo2_Y[0]),(logo2_X[1],logo2_Y[1]),(0,0,255),2) print tema,ratio2,result logo2=imglogo[logo2_Y[0]:logo2_Y[1],logo2_X[0]:logo2_X[1]] cv2.imwrite('./logo2.jpg',logo2) return img
def get_contour(self, arg_frame, arg_export_index, arg_export_path, arg_export_filename, arg_binaryMethod): # Otsu's thresholding after Gaussian filtering tmp = cv2.cvtColor(arg_frame, cv2.COLOR_RGB2GRAY) blur = cv2.GaussianBlur(tmp,(5,5),0) if arg_binaryMethod== 0: ret, thresholdedImg= cv2.threshold(blur.copy() , self.threshold_graylevel, 255 , 0) elif arg_binaryMethod == 1: ret,thresholdedImg = cv2.threshold(blur.copy(),0 ,255 ,cv2.THRESH_BINARY+cv2.THRESH_OTSU) elif arg_binaryMethod== 2: thresholdedImg = cv2.adaptiveThreshold(blur.copy(),255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,0) result = cv2.cvtColor(thresholdedImg, cv2.COLOR_GRAY2RGB) ctrs, hier = cv2.findContours(thresholdedImg, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) ctrs = filter(lambda x : cv2.contourArea(x) > self.threshold_size , ctrs) rects = [[cv2.boundingRect(ctr) , ctr] for ctr in ctrs] for rect , cntr in rects: cv2.drawContours(result, [cntr], 0, (0, 128, 255), 3) if arg_export_index: cv2.imwrite(arg_export_path+ arg_export_filename+'.jpg', result) print "Get Contour success" return result
def find_lines(img, acc_threshold=0.25, should_erode=True): if len(img.shape) == 3 and img.shape[2] == 3: # if it's color img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img = cv2.GaussianBlur(img, (11, 11), 0) img = cv2.adaptiveThreshold( img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 2) img = cv2.bitwise_not(img) # thresh = 127 # edges = cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY)[1] # edges = cv2.Canny(blur, 500, 500, apertureSize=3) if should_erode: element = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4)) img = cv2.erode(img, element) theta = np.pi/2000 angle_threshold = 2 horizontal = cv2.HoughLines( img, 1, theta, int(acc_threshold * img.shape[1]), min_theta=np.radians(90 - angle_threshold), max_theta=np.radians(90 + angle_threshold)) vertical = cv2.HoughLines( img, 1, theta, int(acc_threshold * img.shape[0]), min_theta=np.radians(-angle_threshold), max_theta=np.radians(angle_threshold), ) horizontal = list(horizontal) if horizontal is not None else [] vertical = list(vertical) if vertical is not None else [] horizontal = [line[0] for line in horizontal] vertical = [line[0] for line in vertical] horizontal = np.asarray(horizontal) vertical = np.asarray(vertical) return horizontal, vertical
def remove_noise_and_smooth(file_name): logging.info('Removing noise and smoothening image') img = cv2.imread(file_name, 0) filtered = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, 3) kernel = np.ones((1, 1), np.uint8) opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel) closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel) img = image_smoothening(img) or_image = cv2.bitwise_or(img, closing) return or_image
def adaptive_thresholding(img): # adaptive mean binary threshold th4 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2) # adaptive gaussian thresholding th5 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2) return th5
def render(self,frame): numDownSamples = 2 img_rgb = frame # number of downscaling steps numBilateralFilters = 7 # number of bilateral filtering steps # -- STEP 1 -- # downsample image using Gaussian pyramid img_color = img_rgb for _ in xrange(numDownSamples): img_color = cv2.pyrDown(img_color) # repeatedly apply small bilateral filter instead of applying # one large filter for _ in xrange(numBilateralFilters): img_color = cv2.bilateralFilter(img_color, 9, 9, 7) # upsample image to original size for _ in xrange(numDownSamples): img_color = cv2.pyrUp(img_color) # convert to grayscale and apply median blur img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY) img_blur = cv2.medianBlur(img_gray, 7) # detect and enhance edges img_edge = cv2.adaptiveThreshold(img_blur, 255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 9, 2) # -- STEP 5 -- # convert back to color so that it can be bit-ANDed with color image img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB) final = cv2.bitwise_and(img_color, img_edge) return cv2.medianBlur(final,7)
def render(self,frame): canvas = cv2.imread("pen.jpg", cv2.CV_8UC1) numDownSamples = 2 img_rgb = frame # number of downscaling steps numBilateralFilters = 3 # number of bilateral filtering steps # -- STEP 1 -- # downsample image using Gaussian pyramid img_color = img_rgb for _ in xrange(numDownSamples): img_color = cv2.pyrDown(img_color) # repeatedly apply small bilateral filter instead of applying # one large filter for _ in xrange(numBilateralFilters): img_color = cv2.bilateralFilter(img_color, 9, 9, 3) # upsample image to original size for _ in xrange(numDownSamples): img_color = cv2.pyrUp(img_color) # convert to grayscale and apply median blur img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY) img_blur = cv2.medianBlur(img_gray, 3) # detect and enhance edges img_edge = cv2.adaptiveThreshold(img_blur, 255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 9, 2) return cv2.multiply(cv2.medianBlur(img_edge,7), canvas, scale=1./256)
def imgThresh(img): newIMG = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,7,2) return newIMG
def find_concetric_circles(gray_img,min_ring_count=3, visual_debug=False): # get threshold image used to get crisp-clean edges using blur to remove small features edges = cv2.adaptiveThreshold(cv2.blur(gray_img,(3,3)), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 11) _, contours, hierarchy = cv2.findContours(edges, mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_NONE,offset=(0,0)) #TC89_KCOS if visual_debug is not False: cv2.drawContours(visual_debug,contours,-1,(200,0,0)) if contours is None or hierarchy is None: return [] clusters = get_nested_clusters(contours,hierarchy[0],min_nested_count=min_ring_count) concentric_cirlce_clusters = [] #speed up code by caching computed ellipses ellipses = {} # for each cluster fit ellipses and cull members that dont have good ellipse fit for cluster in clusters: if visual_debug is not False: cv2.drawContours(visual_debug, [contours[i] for i in cluster],-1, (0,0,255)) candidate_ellipses = [] for i in cluster: c = contours[i] if len(c)>5: if not i in ellipses: e = cv2.fitEllipse(c) fit = max(dist_pts_ellipse(e,c)) ellipses[i] = e,fit else: e,fit = ellipses[i] a,b = e[1][0]/2.,e[1][1]/2. if fit<max(2,max(e[1])/20): candidate_ellipses.append(e) if visual_debug is not False: cv2.ellipse(visual_debug, e, (0,255,0),1) if candidate_ellipses: cluster_center = np.mean(np.array([e[0] for e in candidate_ellipses]),axis=0) candidate_ellipses = [e for e in candidate_ellipses if np.linalg.norm(e[0]-cluster_center)<max(3,min(e[1])/20) ] if len(candidate_ellipses) >= min_ring_count: concentric_cirlce_clusters.append(candidate_ellipses) if visual_debug is not False: cv2.ellipse(visual_debug, candidate_ellipses[-1], (0,255,255),4) #return clusters sorted by size of outmost cirlce biggest first. return sorted(concentric_cirlce_clusters,key=lambda e:-max(e[-1][1]))
def convert_to_linedrawing(self, luminous_image_data): linedrawing = cv2.adaptiveThreshold(luminous_image_data, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) return linedrawing
def segment(im): """ :param im: Image to detect digits and operations in """ gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) #grayscale blur = cv2.GaussianBlur(gray,(5,5),0) #smooth image to reduce noise #adaptive thresholding for different lighting conditions thresh = cv2.adaptiveThreshold(blur,255,1,1,11,2) ################# Now finding Contours ################### image,contours, hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) samples = np.empty((0,100)) keys = [i for i in range(48,58)] for cnt in contours: if cv2.contourArea(cnt) > 20: [x,y,w,h] = cv2.boundingRect(cnt) #Draw bounding box for it, then resize to 10x10, and store its pixel values in an array if h>1: cv2.rectangle(im,(x,y),(x+w,y+h),(0,0,255),2) roi = thresh[y:y+h,x:x+w] roismall = cv2.resize(roi,(10,10)) cv2.imshow('detecting',im) key = cv2.waitKey(0) if key == 27: # (escape to quit) sys.exit() else: #press any key to continue sample = roismall.reshape((1,100)) samples = np.append(samples,sample,0) print "segmentation complete" cv2.imwrite('data/seg_result.png',im) np.savetxt('data/generalsamples.data',samples)
def thresholdImage(gray,thr_type,thr,block_size=None,img=None): """ Where thr_type in {1,2,3,4} 1: Normal threshold 2: Otsu 3: Adaptive (mean) 4: Adaptive (Gaussian) More thresholds: Using two thresholds taking into account that most pixels are from the floor (Trying to don't erase black cars) 5: Double threshold (using percentiles) 6: Double threshold (using manually set values) """ if thr_type == 1: ret,thr = cv2.threshold(gray,thr,255,cv2.THRESH_BINARY) return thr elif thr_type == 2: ret,thr = cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # Black/red cars desapeared. Good for Segmentation of background return thr elif thr_type == 3: return cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,block_size,2) # Less noise, but can't recognize all cars elif thr_type == 4: return cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,block_size,2) # More noise, more cars elif thr_type == 5: firstQ = np.percentile(gray2,65) # Return de value of the pixel that corresponds to the 65 percent of all sorted pixels in grayscale secondQ = np.percentile(gray2,50) thirdQ = np.percentile(gray2,35) return applyThreshold(gray,firstQ,thirdQ) elif thr_type == 6: return applyThreshold(gray,40,113) elif thr_type == 7: rows,col = img[:,:,0].shape r1,g1,b1 = getChannels(gray) # Actually is not grayscale but a BGR image (just a name) r2,g2,b2 = getChannels(img) res = np.zeros((rows,col)) for i in range(0,rows): for j in range(0,col): rDif = abs(int(r1[i,j]) - int(r2[i,j])) gDif = abs(int(g1[i,j]) - int(g2[i,j])) bDif = abs(int(b1[i,j]) - int(b2[i,j])) if rDif >= thr or gDif >= thr or bDif >= thr: res[i,j] = 0 else: res[i,j] = 255 return res else: return None
def apply_filters(self, frame): """Apply specified filters to frame. Args: frame (np.ndarray): frame to be modified. Returns: n_frame (np.ndarray): modified frame. """ n_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if 'g-blur' in self.filters: n_frame = cv2.GaussianBlur(n_frame, (5,5), 0) if 'b-filtering' in self.filters: n_frame = cv2.bilateralFilter(n_frame, 9, 75, 75) if 't_adaptive' in self.filters: n_frame = cv2.adaptiveThreshold(n_frame, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1) if 'otsu' in self.filters: _, n_frame = cv2.threshold(n_frame, 125, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) if 'canny' in self.filters: n_frame = cv2.Canny(n_frame, 100, 200) if 'b-subtraction' in self.filters: n_frame = self.subtractor.apply(frame) n_frame = cv2.cvtColor(n_frame, cv2.COLOR_GRAY2BGR) return n_frame
def get_mask(name, small, pagemask, masktype): sgray = cv2.cvtColor(small, cv2.COLOR_RGB2GRAY) if masktype == 'text': mask = cv2.adaptiveThreshold(sgray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, ADAPTIVE_WINSZ, 25) if DEBUG_LEVEL >= 3: debug_show(name, 0.1, 'thresholded', mask) mask = cv2.dilate(mask, box(9, 1)) if DEBUG_LEVEL >= 3: debug_show(name, 0.2, 'dilated', mask) mask = cv2.erode(mask, box(1, 3)) if DEBUG_LEVEL >= 3: debug_show(name, 0.3, 'eroded', mask) else: mask = cv2.adaptiveThreshold(sgray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, ADAPTIVE_WINSZ, 7) if DEBUG_LEVEL >= 3: debug_show(name, 0.4, 'thresholded', mask) mask = cv2.erode(mask, box(3, 1), iterations=3) if DEBUG_LEVEL >= 3: debug_show(name, 0.5, 'eroded', mask) mask = cv2.dilate(mask, box(8, 2)) if DEBUG_LEVEL >= 3: debug_show(name, 0.6, 'dilated', mask) return np.minimum(mask, pagemask)
def remap_image(name, img, small, page_dims, params): height = 0.5 * page_dims[1] * OUTPUT_ZOOM * img.shape[0] height = round_nearest_multiple(height, REMAP_DECIMATE) width = round_nearest_multiple(height * page_dims[0] / page_dims[1], REMAP_DECIMATE) print ' output will be {}x{}'.format(width, height) height_small = height / REMAP_DECIMATE width_small = width / REMAP_DECIMATE page_x_range = np.linspace(0, page_dims[0], width_small) page_y_range = np.linspace(0, page_dims[1], height_small) page_x_coords, page_y_coords = np.meshgrid(page_x_range, page_y_range) page_xy_coords = np.hstack((page_x_coords.flatten().reshape((-1, 1)), page_y_coords.flatten().reshape((-1, 1)))) page_xy_coords = page_xy_coords.astype(np.float32) image_points = project_xy(page_xy_coords, params) image_points = norm2pix(img.shape, image_points, False) image_x_coords = image_points[:, 0, 0].reshape(page_x_coords.shape) image_y_coords = image_points[:, 0, 1].reshape(page_y_coords.shape) image_x_coords = cv2.resize(image_x_coords, (width, height), interpolation=cv2.INTER_CUBIC) image_y_coords = cv2.resize(image_y_coords, (width, height), interpolation=cv2.INTER_CUBIC) img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) remapped = cv2.remap(img_gray, image_x_coords, image_y_coords, cv2.INTER_CUBIC, None, cv2.BORDER_REPLICATE) thresh = cv2.adaptiveThreshold(remapped, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, ADAPTIVE_WINSZ, 25) pil_image = Image.fromarray(thresh) pil_image = pil_image.convert('1') threshfile = name + '_thresh.png' pil_image.save(threshfile, dpi=(OUTPUT_DPI, OUTPUT_DPI)) if DEBUG_LEVEL >= 1: height = small.shape[0] width = int(round(height * float(thresh.shape[1])/thresh.shape[0])) display = cv2.resize(thresh, (width, height), interpolation=cv2.INTER_AREA) debug_show(name, 6, 'output', display) return threshfile
def binarize(self): # ????????? ????? ??? = retval2, thres = cv2.threshold(data, 50,70,cv2.THRESH_BINARY) thres = cv2.blur(thres, (50, 50)) # ????????? ???????? = a = cv2.adaptiveThreshold(self.data, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 125, 1) # a = cv2.adaptiveThreshold(a, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 55, 1) # retval2, a = cv2.threshold(self.data, 90, 255, cv2.THRESH_BINARY) # a1 = np.median(a, 0) # plt.hist(a1, 256, range=[0, 255], fc='k', ec='k') # plt.show() self.data = a
def Bin(data): # ????????? ????? ??? = retval2, thres = cv2.threshold(data, 50,70,cv2.THRESH_BINARY) thres = cv2.blur(thres, (50, 50)) # ????????? ???????? = # retval2, thres = cv2.threshold(data,240,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # thres =cv2.adaptiveThreshold(data, 255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 0) retval2, thres = cv2.threshold(data, 120,127,cv2.THRESH_BINARY) # thres = cv2.blur(thres, (50, 50)) return thres
def PrepareImage(image): """Converts color image to black and white""" # work on gray scale bw = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # remove noise, preserve edges bw = cv2.bilateralFilter(bw, 9, 75, 75) # binary threshold bw = cv2.adaptiveThreshold(bw, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) return bw
def tresholdify(self, pic): self.log.info("applying threshold filter") pic = cv2.cvtColor(pic, cv2.COLOR_BGR2GRAY) pic = cv2.GaussianBlur(pic, (5, 5), 0) pic = cv2.adaptiveThreshold(pic, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1) return pic
def detect(self, image, mask = None): b,g,r = cv2.split(image) difference = cv2.subtract(r, b) difference = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # ADAPTIVE_THRESH_GAUSSIAN_C or ADAPTIVE_THRESH_MEAN_C return cv2.adaptiveThreshold(difference, 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, Configuration.adaptive_block_size, Configuration.adaptive_threshold)
def binarize(img=get_sample_image()): thresh = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 4) return thresh
def binarialization(arg_frame, arg_binaryMethod, arg_thresholdValue= 100): if len(arg_frame.shape)==3: tmp = cv2.cvtColor(arg_frame, cv2.COLOR_RGB2GRAY) else: tmp= arg_frame.copy() # Otsu's thresholding after Gaussian filtering blur = cv2.GaussianBlur(tmp,(5,5),0) if arg_binaryMethod== 0: ret, thresholdedImg= cv2.threshold(blur.copy() , arg_thresholdValue, 255 , 0) elif arg_binaryMethod == 1: ret,thresholdedImg = cv2.threshold(blur.copy(),0 ,255 ,cv2.THRESH_BINARY+cv2.THRESH_OTSU) elif arg_binaryMethod== 2: thresholdedImg = cv2.adaptiveThreshold(blur.copy(),255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,0) return thresholdedImg
def adaptive_binarize_py(x, block_size=5, C=33.8): "Works like an edge detector." # ADAPTIVE_THRESH_GAUSSIAN_C, ADAPTIVE_THRESH_MEAN_C # THRESH_BINARY, THRESH_BINARY_INV import cv2 ret_imgs = opencv_wrapper(x, cv2.adaptiveThreshold, [255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, block_size, C]) return ret_imgs
def threshold_image_for_tape(image): """ Thresholds image for reflective tape with light shined on it. This means it looks for pixels that are almost white, makes them white, and makes everything else black. Parameters: :param: `image` - the source image to threshold from """ orig_image = numpy.copy(image) # print orig_image.size orig_image = cv2.medianBlur(orig_image, 3) # orig_image[orig_image > 100] = 255 # return orig_image[orig_image > 100] height, width = orig_image.shape[0], orig_image.shape[1] eight_bit_image = numpy.zeros((height, width, 1), numpy.uint8) cv2.inRange(orig_image, (B_RANGE[0], G_RANGE[0], R_RANGE[0], 0), (B_RANGE[1], G_RANGE[1], R_RANGE[1], 100), eight_bit_image) # # eight_bit_image = cv2.adaptiveThreshold(orig_image, # # 255, # # cv2.ADAPTIVE_THRESH_GAUSSIAN_C, # # cv2.THRESH_BINARY, # # 8, # # 0) # cv2.medianBlur(eight_bit_image, 9) return eight_bit_image
def th2(self,img): # ????? # ???? # median = cv2.medianBlur(thresh,3) # img_blur = cv2.GaussianBlur(img_gray, (m_blurBlock,m_blurBlock), 0) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) thresh = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 19) return thresh # ?????
def __cv_adaptivethreshold(src, max_value, adaptive_method, threshold_type, block_size, c): """Applies an adaptive threshold to an array. Args: src: A gray scale numpy.ndarray. max_value: Value to assign to pixels that match the condition. adaptive_method: Adaptive threshold method to use. (opencv enum) threshold_type: Type of threshold to use. (opencv enum) block_size: Size of a pixel area that is used to calculate a threshold.(number) c: Constant to subtract from the mean.(number) Returns: A black and white numpy.ndarray. """ return cv2.adaptiveThreshold(src, max_value, adaptive_method, threshold_type, (int)(block_size + 0.5), c)
def adaptiveThresholding(gray=None, neighbor=5, blur=False, k_size=3): if(blur): gray = cv2.GaussianBlur(gray, (k_size, k_size), 0) return cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, neighbor, 1)
def getAdaptiveThreshold(self, image): return cv2.adaptiveThreshold(image,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C ,\ cv2.THRESH_BINARY,21,0)
def _clean_image(self) -> None: self._img = cv2.medianBlur(self._img, ksize=3) self._img = cv2.adaptiveThreshold(self._img, maxValue=255, adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C, thresholdType=cv2.THRESH_BINARY, blockSize=11, C=2) self.intermediate_images.append(NamedImage(self._img.copy(), 'Clean Image'))
def subtract_back(self,frm): #dst=self.__back__-self.__foreground__ temp=np.zeros((600,800),np.uint8) self.__foreground__=cv2.blur(self.__foreground__,(3,3)) dst=cv2.absdiff(self.__back__,self.__foreground__) #dst=cv2.adaptiveThreshold(dst,255,cv.CV_THRESH_BINARY,cv.CV_ADAPTIVE_THRESH_GAUSSIAN_C,5,10) val,dst=cv2.threshold(dst,0,255,cv.CV_THRESH_BINARY+cv.CV_THRESH_OTSU) fg=cv2.erode(dst,None,iterations=1) bg=cv2.dilate(dst,None,iterations=4) _,bg=cv2.threshold(bg,1,128,1) mark=cv2.add(fg,bg) mark32=np.int32(mark) #dst.copy(temp) #seq=cv.FindContours(cv.fromarray(dst),self.mem,cv.CV_RETR_EXTERNAL,cv.CV_CHAIN_APPROX_SIMPLE) #cntr,h=cv2.findContours(dst,cv.CV_RETR_EXTERNAL,cv.CV_CHAIN_APPROX_SIMPLE) #print cntr,h #cv.DrawContours(cv.fromarray(temp),seq,(255,255,255),(255,255,255),1,cv.CV_FILLED) cv2.watershed(frm, mark32) self.final_mask=cv2.convertScaleAbs(mark32) #print temp #--outputs--- #cv2.imshow("subtraction",fg) #cv2.imshow("thres",dst) #cv2.imshow("thres1",bg) #cv2.imshow("mark",mark) #cv2.imshow("final",self.final_mask)
def render(self,frame): return cv2.medianBlur(cv2.adaptiveThreshold(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,27,3),5)
def preprocess(self,img): gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray,(5,5),5 ) thresh = cv2.adaptiveThreshold(blur,255,1,1,11,1) return thresh
def show_em(self): """Displays the EM events (grayscale ATIS events)""" frame_length = 24e3 t_max = self.data.ts[-1] frame_start = self.data[0].ts frame_end = self.data[0].ts + frame_length max_val = 1.16e5 min_val = 1.74e3 val_range = max_val - min_val thr = np.rec.array(None, dtype=[('valid', np.bool_), ('low', np.uint64), ('high', np.uint64)], shape=(self.height, self.width)) thr.valid.fill(False) thr.low.fill(frame_start) thr.high.fill(0) def show_em_frame(frame_data): """Prepare and show a single frame of em data to be shown""" for datum in np.nditer(frame_data): ts_val = datum['ts'].item(0) thr_data = thr[datum['y'].item(0), datum['x'].item(0)] if datum['p'].item(0) == 0: thr_data.valid = 1 thr_data.low = ts_val elif thr_data.valid == 1: thr_data.valid = 0 thr_data.high = ts_val - thr_data.low img = 255 * (1 - (thr.high - min_val) / (val_range)) #thr_h = cv2.adaptiveThreshold(thr_h, 255, #cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 3, 0) img = np.piecewise(img, [img <= 0, (img > 0) & (img < 255), img >= 255], [0, lambda x: x, 255]) img = img.astype('uint8') cv2.imshow('img', img) cv2.waitKey(1) while frame_start < t_max: #with timer.Timer() as em_playback_timer: frame_data = self.data[(self.data.ts >= frame_start) & (self.data.ts < frame_end)] show_em_frame(frame_data) frame_start = frame_end + 1 frame_end += frame_length + 1 #print 'showing em frame took %s seconds' %em_playback_timer.secs cv2.destroyAllWindows() return
def find_contours(img): ''' :param img: (numpy array) :return: all possible rectangles (contours) ''' img_blurred = cv2.GaussianBlur(img, (5, 5), 1) # remove noise img_gray = cv2.cvtColor(img_blurred, cv2.COLOR_BGR2GRAY) # greyscale image # cv2.imshow('', img_gray) # cv2.waitKey(0) # Apply Sobel filter to find the vertical edges # Find vertical lines. Car plates have high density of vertical lines img_sobel_x = cv2.Sobel(img_gray, cv2.CV_8UC1, dx=1, dy=0, ksize=3, scale=1, delta=0, borderType=cv2.BORDER_DEFAULT) # cv2.imshow('img_sobel', img_sobel_x) # Apply optimal threshold by using Oslu algorithm retval, img_threshold = cv2.threshold(img_sobel_x, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) # cv2.imshow('s', img_threshold) # cv2.waitKey(0) # TODO: Try to apply AdaptiveThresh # Size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on. # gaus_threshold = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 115, 1) # cv2.imshow('or', img) # cv2.imshow('gaus', gaus_threshold) # cv2.waitKey(0) # Define a stuctural element as rectangular of size 17x3 (we'll use it during the morphological cleaning) element = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(17, 3)) # And use this structural element in a close morphological operation morph_img_threshold = deepcopy(img_threshold) cv2.morphologyEx(src=img_threshold, op=cv2.MORPH_CLOSE, kernel=element, dst=morph_img_threshold) # cv2.dilate(img_threshold, kernel=np.ones((1,1), np.uint8), dst=img_threshold, iterations=1) # cv2.imshow('Normal Threshold', img_threshold) # cv2.imshow('Morphological Threshold based on rect. mask', morph_img_threshold) # cv2.waitKey(0) # Find contours that contain possible plates (in hierarchical relationship) contours, hierarchy = cv2.findContours(morph_img_threshold, mode=cv2.RETR_EXTERNAL, # retrieve the external contours method=cv2.CHAIN_APPROX_NONE) # all pixels of each contour plot_intermediate_steps = False if plot_intermediate_steps: plot(plt, 321, img, "Original image") plot(plt, 322, img_blurred, "Blurred image") plot(plt, 323, img_gray, "Grayscale image", cmap='gray') plot(plt, 324, img_sobel_x, "Sobel") plot(plt, 325, img_threshold, "Threshold image") # plot(plt, 326, morph_img_threshold, "After Morphological filter") plt.tight_layout() plt.show() return contours
def find_goal(frame): # converting to HSV hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #show_image(hsv) lower_blue = np.array([113, 40, 29]) upper_blue = np.array([123, 180, 255]) mask = cv2.inRange(hsv, lower_blue, upper_blue) #show_image(mask) result = cv2.bitwise_and(frame, frame, mask=mask) #show_image(result) blur = cv2.blur(result, (5, 5)) bw = cv2.cvtColor(blur, cv2.COLOR_HSV2BGR) bw2 = cv2.cvtColor(bw, cv2.COLOR_BGR2GRAY) ret, th3 = cv2.threshold(bw2, 30, 255, cv2.THRESH_BINARY) # th3 = cv2.adaptiveThreshold(bw2,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ # cv2.THRESH_BINARY,11,2) edges = cv2.Canny(th3, 100, 200) th4 = copy.copy(th3) perimeter = 0 j = 0 image, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # print len(contours) # if(len(contours) > 5): # continue cnt = np.array([]) for i in range(len(contours)): if (perimeter < cv2.contourArea(contours[i])): perimeter = cv2.contourArea(contours[i]) j = i; cnt = contours[j] if (len(cnt) == 0): return (-1, -1) cv2.drawContours(frame, cnt, -1, (0, 255, 0), 3) x = 0 y = 0 #print 'find goal' #print len(cnt), j #print cnt for i in range(len(cnt)): x = x + cnt[i][0][0] y = y + cnt[i][0][1] x = x/len(cnt) y = y/len(cnt) #print x, y x = int(x) y = int(y) cv2.circle(frame, (x, y), 5, (255, 0, 255), -1) #cv2.imshow('image', frame) #k = cv2.waitKey(0) return (int(x), int(y))
def find_goal(img): # converting to HSV frame = copy.copy(img) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #show_image(hsv) lower_blue = np.array([113, 40, 29]) upper_blue = np.array([123, 180, 255]) mask = cv2.inRange(hsv, lower_blue, upper_blue) #show_image(mask) result = cv2.bitwise_and(frame, frame, mask=mask) #show_image(result) blur = cv2.blur(result, (5, 5)) bw = cv2.cvtColor(blur, cv2.COLOR_HSV2BGR) bw2 = cv2.cvtColor(bw, cv2.COLOR_BGR2GRAY) ret, th3 = cv2.threshold(bw2, 30, 255, cv2.THRESH_BINARY) # th3 = cv2.adaptiveThreshold(bw2,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ # cv2.THRESH_BINARY,11,2) edges = cv2.Canny(th3, 100, 200) th4 = copy.copy(th3) perimeter = 0 j = 0 image, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # print len(contours) # if(len(contours) > 5): # continue cnt = np.array([]) for i in range(len(contours)): if (perimeter < cv2.contourArea(contours[i])): perimeter = cv2.contourArea(contours[i]) j = i; cnt = contours[j] if (len(cnt) == 0): return (-1, -1) cv2.drawContours(frame, cnt, -1, (0, 255, 0), 3) x = 0 y = 0 #print 'find goal' #print len(cnt), j #print cnt for i in range(len(cnt)): x = x + cnt[i][0][0] y = y + cnt[i][0][1] x = x/len(cnt) y = y/len(cnt) #print x, y x = int(x) y = int(y) cv2.circle(frame, (x, y), 5, (255, 0, 255), -1) cv2.imshow('image', frame) cv2.imwrite('goal.jpg', frame) k = cv2.waitKey(0) return (int(x), int(y))