Python cv2 模块,FONT_HERSHEY_DUPLEX 实例源码

我们从Python开源项目中,提取了以下21个代码示例,用于说明如何使用cv2.FONT_HERSHEY_DUPLEX

项目:pedestrianSys    作者:PhilipChicco    | 项目源码 | 文件源码
def display_detected(self, frame, face_locs, people, confidence):
        """
        - Display ROI's of detected faces with labels
        :param frame:
        :param face_locs:
        :param people : people in image classified
        :param confidence : recognition confidence
        :return:
        """

        if not len(face_locs) == 0:  # nothing detected
            for (top, right, bottom, left), name, conf in zip(face_locs, people, confidence):
                # Scale back up face locations since the frame we detected in was scaled to 1/4 size
                top
                right
                bottom
                left

                # string
                conf_4f = "%.3f" % conf
                peop_conf = "{} {}%".format(name, float(conf_4f) * 100)

                # Draw a box around the face
                cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

                # Draw a label with a name below the face
                # cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
                cv2.rectangle(frame, (left, top + 20), (right, top), (0, 0, 255), cv2.FILLED)

                font = cv2.FONT_HERSHEY_DUPLEX  # color
                # cv2.putText(frame, peop_conf , (left + 6, bottom - 6), font, 0.5, (255, 255, 255), 1)
                cv2.putText(frame, peop_conf, (left, top + 15), font, 0.5, (255, 255, 255), 1)
        pass
项目:esys-pbi    作者:fsxfreak    | 项目源码 | 文件源码
def update(self,frame,events):
        self.last_frame_ts = frame.timestamp
        from player_methods import transparent_circle
        events['fixations'] = self.g_pool.fixations_by_frame[frame.index]
        if self.show_fixations:
            for f in self.g_pool.fixations_by_frame[frame.index]:
                x = int(f['norm_pos'][0]*self.img_size[0])
                y = int((1-f['norm_pos'][1])*self.img_size[1])
                transparent_circle(frame.img, (x,y), radius=f['pix_dispersion']/2, color=(.5, .2, .6, .7), thickness=-1)
                cv2.putText(
                    frame.img,
                    '{:d}'.format(f['id']),
                    (x+20,y),
                    cv2.FONT_HERSHEY_DUPLEX,
                    0.8,(255,150,100))
                # cv2.putText(frame.img,'%i - %i'%(f['start_frame_index'],f['end_frame_index']),(x,y), cv2.FONT_HERSHEY_DUPLEX,0.8,(255,150,100))
项目:esys-pbi    作者:fsxfreak    | 项目源码 | 文件源码
def update(self,frame,events):
        self.last_frame_ts = frame.timestamp
        from player_methods import transparent_circle
        events['fixations'] = self.g_pool.fixations_by_frame[frame.index]
        if self.show_fixations:
            for f in self.g_pool.fixations_by_frame[frame.index]:
                eye_id = f['eye_id']
                x = int(f['norm_pos'][0]*self.img_size[0])
                y = int((1-f['norm_pos'][1])*self.img_size[1])
                transparent_circle(frame.img, (x,y), radius=f['pix_dispersion']/2, color=(.5, .2, .6, .7), thickness=-1)
                cv2.putText(
                    frame.img,
                    '{:d} - eye {:d}'.format(f['id'], eye_id),
                    (x+20,y-5+30*eye_id),
                    cv2.FONT_HERSHEY_DUPLEX,
                    0.8,(255,150,100))
                # cv2.putText(frame.img,'%i - %i'%(f['start_frame_index'],f['end_frame_index']),(x,y), cv2.FONT_HERSHEY_DUPLEX,0.8,(255,150,100))
项目:face    作者:MOluwole    | 项目源码 | 文件源码
def DispID(x, y, w, h, NAME, Image):

    #  --------------------------------- THE POSITION OF THE ID BOX  ---------------------------------------------

    Name_y_pos = y - 10
    Name_X_pos = x + w/2 - (len(NAME)*7/2)

    if Name_X_pos < 0:
        Name_X_pos = 0
    elif (Name_X_pos +10 + (len(NAME) * 7) > Image.shape[1]):
          Name_X_pos= Name_X_pos - (Name_X_pos +10 + (len(NAME) * 7) - (Image.shape[1]))
    if Name_y_pos < 0:
        Name_y_pos = Name_y_pos = y + h + 10

 #  ------------------------------------    THE DRAWING OF THE BOX AND ID   --------------------------------------

    draw_box(Image, x, y, w, h)


    cv2.rectangle(Image, (Name_X_pos-10, Name_y_pos-25), (Name_X_pos +10 + (len(NAME) * 7), Name_y_pos-1), (0,0,0), -2)           # Draw a Black Rectangle over the face frame
    cv2.rectangle(Image, (Name_X_pos-10, Name_y_pos-25), (Name_X_pos +10 + (len(NAME) * 7), Name_y_pos-1), WHITE, 1) 
    cv2.putText(Image, NAME, (Name_X_pos, Name_y_pos - 10), cv2.FONT_HERSHEY_DUPLEX, .4, WHITE)                         # Print the name of the ID
项目:face    作者:MOluwole    | 项目源码 | 文件源码
def DispID2(x, y, w, h, NAME, Image):

#  --------------------------------- THE POSITION OF THE ID BOX  -------------------------------------------------        

    Name_y_pos = y - 40
    Name_X_pos = x + w/2 - (len(NAME)*7/2)

    if Name_X_pos < 0:
        Name_X_pos = 0
    elif (Name_X_pos +10 + (len(NAME) * 7) > Image.shape[1]):
          Name_X_pos= Name_X_pos - (Name_X_pos +10 + (len(NAME) * 7) - (Image.shape[1]))
    if Name_y_pos < 0:
        Name_y_pos = Name_y_pos = y + h + 10

 #  ------------------------------------    THE DRAWING OF THE BOX AND ID   --------------------------------------
    cv2.rectangle(Image, (Name_X_pos-10, Name_y_pos-25), (Name_X_pos +10 + (len(NAME) * 7), Name_y_pos-1), (0,0,0), -2)           # Draw a Black Rectangle over the face frame
    cv2.rectangle(Image, (Name_X_pos-10, Name_y_pos-25), (Name_X_pos +10 + (len(NAME) * 7), Name_y_pos-1), WHITE, 1) 
    cv2.putText(Image, NAME, (Name_X_pos, Name_y_pos - 10), cv2.FONT_HERSHEY_DUPLEX, .4, WHITE)                         # Print the name of the ID


# ---------------     THIRD ID BOX      ----------------------
项目:face    作者:MOluwole    | 项目源码 | 文件源码
def DispID3(x, y, w, h, NAME, Image):

#  --------------------------------- THE POSITION OF THE ID BOX  -------------------------------------------------        

    Name_y_pos = y - 70
    Name_X_pos = x + w/2 - (len(NAME)*7/2)

    if Name_X_pos < 0:
        Name_X_pos = 0
    elif (Name_X_pos +10 + (len(NAME) * 7) > Image.shape[1]):
          Name_X_pos= Name_X_pos - (Name_X_pos +10 + (len(NAME) * 7) - (Image.shape[1]))
    if Name_y_pos < 0:
        Name_y_pos = Name_y_pos = y + h + 10

 #  ------------------------------------    THE DRAWING OF THE BOX AND ID   --------------------------------------
    cv2.rectangle(Image, (Name_X_pos-10, Name_y_pos-25), (Name_X_pos +10 + (len(NAME) * 7), Name_y_pos-1), (0,0,0), -2)           # Draw a Black Rectangle over the face frame
    cv2.rectangle(Image, (Name_X_pos-10, Name_y_pos-25), (Name_X_pos +10 + (len(NAME) * 7), Name_y_pos-1), WHITE, 1) 
    cv2.putText(Image, NAME, (Name_X_pos, Name_y_pos - 10), cv2.FONT_HERSHEY_DUPLEX, .4, WHITE)                         # Print the name of the ID
项目:tf-openpose    作者:ildoonet    | 项目源码 | 文件源码
def _show(self, path, inpmat, heatmat, pafmat, humans):
        image = cv2.imread(path)

        # CocoPoseLMDB.display_image(inpmat, heatmat, pafmat)

        image_h, image_w = image.shape[:2]
        heat_h, heat_w = heatmat.shape[:2]
        for _, human in humans.items():
            for part in human:
                if part['partIdx'] not in common.CocoPairsRender:
                    continue
                center1 = (int((part['c1'][0] + 0.5) * image_w / heat_w), int((part['c1'][1] + 0.5) * image_h / heat_h))
                center2 = (int((part['c2'][0] + 0.5) * image_w / heat_w), int((part['c2'][1] + 0.5) * image_h / heat_h))
                cv2.circle(image, center1, 2, (255, 0, 0), thickness=3, lineType=8, shift=0)
                cv2.circle(image, center2, 2, (255, 0, 0), thickness=3, lineType=8, shift=0)
                cv2.putText(image, str(part['partIdx'][1]), center2, cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 0, 0), 1)
                image = cv2.line(image, center1, center2, (255, 0, 0), 1)
        cv2.imshow('result', image)
        cv2.waitKey(0)
项目:SSD_tensorflow_VOC    作者:LevinJ    | 项目源码 | 文件源码
def bboxes_draw_on_img(img, classes, scores, bboxes, colors, thickness=2):
    shape = img.shape
    for i in range(bboxes.shape[0]):
        bbox = bboxes[i]
        color = colors[classes[i]]
        # Draw bounding box...
        p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
        p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
        cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
        # Draw text...
        s = '%s/%.3f' % (classes[i], scores[i])
        p1 = (p1[0]-5, p1[1])
        cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1)


# =========================================================================== #
# Matplotlib show...
# =========================================================================== #
项目:DAVIS-2016-Chanllege-Solution    作者:tangyuhao    | 项目源码 | 文件源码
def bboxes_draw_on_img(img, classes, scores, bboxes, colors, thickness=2):
    shape = img.shape
    for i in range(bboxes.shape[0]):
        bbox = bboxes[i]
        color = colors[classes[i]]
        # Draw bounding box...
        p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
        p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
        cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
        # Draw text...
        s = '%s/%.3f' % (classes[i], scores[i])
        p1 = (p1[0]-5, p1[1])
        cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1)


# =========================================================================== #
# Matplotlib show...
# =========================================================================== #
项目:face    作者:MOluwole    | 项目源码 | 文件源码
def __init__(self, matric_num):
        WHITE = [255, 255, 255]

        face_cascade = cv2.CascadeClassifier('Haar/haarcascade_frontalcatface.xml')
        eye_cascade = cv2.CascadeClassifier('Haar/haarcascade_eye.xml')

        ID = NameFind.AddName(matric_num)
        Count = 0
        cap = cv2.VideoCapture(0)  # Camera object
        self.__trainer__ = None

        if not os.path.exists('dataSet'):
            os.makedirs('dataSet')

        while True:
            ret, img = cap.read()
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # Convert the Camera to grayScale
            faces = face_cascade.detectMultiScale(gray, 1.3, 5)  # Detect the faces and store the positions
            for (x, y, w, h) in faces:  # Frames  LOCATION X, Y  WIDTH, HEIGHT
                FaceImage = gray[y - int(h / 2): y + int(h * 1.5),
                            x - int(x / 2): x + int(w * 1.5)]  # The Face is isolated and cropped
                Img = (NameFind.DetectEyes(FaceImage))
                cv2.putText(gray, "FACE DETECTED", (x + (w / 2), y - 5), cv2.FONT_HERSHEY_DUPLEX, .4, WHITE)
                if Img is not None:
                    frame = Img  # Show the detected faces
                else:
                    frame = gray[y: y + h, x: x + w]
                cv2.imwrite("dataSet/" + matric_num.replace('/', '') + "." + str(ID) + "." + str(Count) + ".jpg", frame)
                Count = Count + 1
                # cv2.waitKey(300)
                cv2.imshow("CAPTURED PHOTO", frame)  # show the captured image
            cv2.imshow('Face Recognition System Capture Faces', gray)  # Show the video
            if Count == 150:
                Trainer()
                break
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        print 'FACE CAPTURE FOR THE SUBJECT IS COMPLETE'
        cap.release()
        cv2.destroyAllWindows()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def draw_id(self, img):
        # tag_width_px = self.p[0][0] - self.p[1][0]

        text = str(self.id)
        center = (int(self.c[0] - 15), int(self.c[1]))
        font = cv2.FONT_HERSHEY_DUPLEX
        color = (0, 255, 0)
        thickness = 2
        cv2.putText(img, text, center, font, 0.7, color, thickness)
项目:ml-utils    作者:LinxiFan    | 项目源码 | 文件源码
def draw_text(img, text, box, color='bw'):
    """
    FONT_HERSHEY_COMPLEX
    FONT_HERSHEY_COMPLEX_SMALL
    FONT_HERSHEY_DUPLEX
    FONT_HERSHEY_PLAIN
    FONT_HERSHEY_SCRIPT_COMPLEX
    FONT_HERSHEY_SCRIPT_SIMPLEX
    FONT_HERSHEY_SIMPLEX
    FONT_HERSHEY_TRIPLEX
    FONT_ITALIC
    """
    x, y, w, h = box
    font = cv2.FONT_HERSHEY_DUPLEX
    region = crop(img, box)
    if color == 'bw':
        brightness = np.mean(cv2.cvtColor(region, cv2.COLOR_BGR2GRAY))
        if brightness > 127:
            font_color = (0,0,0)
        else:
            font_color = (255,255,255)
    elif color == 'color':
        mean_bg = np.round(np.mean(region, axis=(0, 1)))
        font_color = tuple(map(int, np.array((255,255,255)) - mean_bg))
    else:
        font_color = (255, 0, 0) # blue

    cv2.putText(img, text, (x, y+h), font, 1, font_color, 2)
项目:SSD_tensorflow_VOC    作者:LevinJ    | 项目源码 | 文件源码
def draw_bbox(img, bbox, shape, label, color=[255, 0, 0], thickness=2):
    p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
    p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
    cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
    p1 = (p1[0]+15, p1[1])
    cv2.putText(img, str(label), p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.5, color, 1)
项目:hand-gesture-recognition-opencv    作者:mahaveerverma    | 项目源码 | 文件源码
def find_gesture(frame_in,finger,palm):
    frame_gesture.set_palm(palm[0],palm[1])
    frame_gesture.set_finger_pos(finger)
    frame_gesture.calc_angles()
    gesture_found=DecideGesture(frame_gesture,GestureDictionary)
    gesture_text="GESTURE:"+str(gesture_found)
    cv2.putText(frame_in,gesture_text,(int(0.56*frame_in.shape[1]),int(0.97*frame_in.shape[0])),cv2.FONT_HERSHEY_DUPLEX,1,(0,255,255),1,8)
    return frame_in,gesture_found

# 7. Remove bg from image
项目:emojivis    作者:JustinShenk    | 项目源码 | 文件源码
def score_emotions(im, eyebrowheight, mouthdist):
    gray = (129, 129, 129)
    red = (0, 0, 255)
    if eyebrowheight > 0.75:
        surscore = eyebrowheight * 10
        surscore = str(int(surscore))
        color = red
    else:
        color = gray
        surscore = ''
    cv2.putText(im, "SURPRISE = " + surscore, (3 * screenwidth / 5, screenheight / 3),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX,
                    fontScale=0.7,
                    color=color,
                    thickness=1)
    if mouthdist > 0.9:
        hapscore = mouthdist * 100
        hapscore = str(int(hapscore))
        color = red
    else:
        color = gray
        hapscore = ''
    cv2.putText(im, "HAPPINESS = " + hapscore, (3 * screenwidth / 5, screenheight / 3 + 20),
                    fontFace=cv2.FONT_HERSHEY_DUPLEX,
                    fontScale=0.7,
                    color=color,
                    thickness=1)

    return im
# Initialize camera
项目:Farmbot_GeneralAP    作者:SpongeYao    | 项目源码 | 文件源码
def draw_XYcoord(arg_frame, arg_pt, arg_dirList):
    arg_x_axis_reverse= arg_dirList[0]
    arg_y_axis_reverse= arg_dirList[1]
    arg_xy_axis_swap= arg_dirList[2]

    frame= arg_frame.copy()
    hor_word = "X"
    ver_word = "Y"
    hor_color = (0, 255, 0)
    ver_color = (0, 0, 255)
    #hor_start, hor_stop = (60, 50), (150, 50)
    #ver_start, ver_stop = (50, 60), (50, 150)
    hor_start, hor_stop = (arg_pt[0]+10, arg_pt[1]), (arg_pt[0]+ 90, arg_pt[1]+ 0)
    ver_start, ver_stop = (arg_pt[0], arg_pt[1]+10), (arg_pt[0]+ 0, arg_pt[1]+ 90) 

    #print arg_xy_axis_swap
    if arg_x_axis_reverse:
        hor_start, hor_stop = hor_stop, hor_start
    if arg_y_axis_reverse:
        ver_start, ver_stop = ver_stop, ver_start
    if arg_xy_axis_swap:
        #(hor_word, hor_color, hor_start, hor_stop, ver_word, ver_color, ver_start, ver_stop) =\
        #(ver_word, ver_color, ver_start, ver_stop, hor_word, hor_color, hor_start, hor_stop)
        hor_word, hor_color, ver_word, ver_color =\
        ver_word, ver_color, hor_word, hor_color

    #print hor_word, hor_color, ver_word, ver_color
    cv2.arrowedLine(frame, hor_start, hor_stop, hor_color, 5, 8, 0, 0.2)
    cv2.arrowedLine(frame, ver_start, ver_stop, ver_color, 5, 8, 0, 0.2)
    cv2.putText(frame, hor_word, (arg_pt[0]+ 30, arg_pt[1]- 10) , cv2.FONT_HERSHEY_DUPLEX, 0.7, hor_color, 2)
    cv2.putText(frame, ver_word, (arg_pt[0]- 20, arg_pt[1]+ 50) , cv2.FONT_HERSHEY_DUPLEX, 0.7, ver_color, 2)
    return frame
项目:DAVIS-2016-Chanllege-Solution    作者:tangyuhao    | 项目源码 | 文件源码
def draw_bbox(img, bbox, shape, label, color=[255, 0, 0], thickness=2):
    p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
    p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
    cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
    p1 = (p1[0]+15, p1[1])
    cv2.putText(img, str(label), p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.5, color, 1)
项目:lsi-faster-rcnn    作者:cguindel    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.5):

    global video_writer

    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    show_im = im.copy()

    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        # Rectangle color is brighter if its probability is higher
        if score>0.2:
            cv2.rectangle(show_im,(int(bbox[0]), int(bbox[1])),
                (int(bbox[2]), int(bbox[3])), (0,0,255*score), 3)

        # Draw classic certainty percentage
        # cv2.putText(show_im, '{:.0f}%'.format(score*100),
        #     (int(bbox[0]), int(bbox[1])-10), cv2.FONT_HERSHEY_DUPLEX,
        #     0.6, (0,0,255))

    cv2.imshow("result", show_im)
    key = cv2.waitKey(3)
    if args.record>0:
        if video_writer is None:
            video_writer = cv2.VideoWriter("output.avi", fourcc, 30, (im.shape[1], im.shape[0]))
            print 'VideoWriter is ready'
        video_writer.write(show_im)

    if key==27:    # Esc key to stop
        sys.exit(0)
项目:hand-gesture-recognition-opencv    作者:mahaveerverma    | 项目源码 | 文件源码
def mark_fingers(frame_in,hull,pt,radius):
    global first_iteration
    global finger_ct_history
    finger=[(hull[0][0][0],hull[0][0][1])]
    j=0

    cx = pt[0]
    cy = pt[1]

    for i in range(len(hull)):
        dist = np.sqrt((hull[-i][0][0] - hull[-i+1][0][0])**2 + (hull[-i][0][1] - hull[-i+1][0][1])**2)
        if (dist>18):
            if(j==0):
                finger=[(hull[-i][0][0],hull[-i][0][1])]
            else:
                finger.append((hull[-i][0][0],hull[-i][0][1]))
            j=j+1

    temp_len=len(finger)
    i=0
    while(i<temp_len):
        dist = np.sqrt( (finger[i][0]- cx)**2 + (finger[i][1] - cy)**2)
        if(dist<finger_thresh_l*radius or dist>finger_thresh_u*radius or finger[i][1]>cy+radius):
            finger.remove((finger[i][0],finger[i][1]))
            temp_len=temp_len-1
        else:
            i=i+1        

    temp_len=len(finger)
    if(temp_len>5):
        for i in range(1,temp_len+1-5):
            finger.remove((finger[temp_len-i][0],finger[temp_len-i][1]))

    palm=[(cx,cy),radius]

    if(first_iteration):
        finger_ct_history[0]=finger_ct_history[1]=len(finger)
        first_iteration=False
    else:
        finger_ct_history[0]=0.34*(finger_ct_history[0]+finger_ct_history[1]+len(finger))

    if((finger_ct_history[0]-int(finger_ct_history[0]))>0.8):
        finger_count=int(finger_ct_history[0])+1
    else:
        finger_count=int(finger_ct_history[0])

    finger_ct_history[1]=len(finger)

    count_text="FINGERS:"+str(finger_count)
    cv2.putText(frame_in,count_text,(int(0.62*frame_in.shape[1]),int(0.88*frame_in.shape[0])),cv2.FONT_HERSHEY_DUPLEX,1,(0,255,255),1,8)

    for k in range(len(finger)):
        cv2.circle(frame_in,finger[k],10,255,2)
        cv2.line(frame_in,finger[k],(cx,cy),255,2)
    return frame_in,finger,palm

# 5. Mark hand center circle
项目:amoc-project    作者:ajayns    | 项目源码 | 文件源码
def main_func():
    img_path='snap.jpg' # THE PATH OF THE IMAGE TO BE ANALYZED

    font=cv2.FONT_HERSHEY_DUPLEX
    emotions = ["anger", "happy", "sadness"] #Emotion list
    clahe=cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8)) # Histogram equalization object
    face_det=dlib.get_frontal_face_detector()
    land_pred=dlib.shape_predictor("data/DlibPredictor/shape_predictor_68_face_landmarks.dat")



    SUPPORT_VECTOR_MACHINE_clf2 = joblib.load('data/Trained_ML_Models/SVM_emo_model_7.pkl')
    # Loading the SVM model trained earlier in the path mentioned above.



    pred_data=[]
    pred_labels=[]

    a=crop_face(img_path)
    img=cv2.imread(a)
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    clahe_gray=clahe.apply(gray)
    landmarks_vec = get_landmarks(clahe_gray,face_det,land_pred)

    #print(len(landmarks_vec))
    #print(landmarks_vec)

    if landmarks_vec == "error":
        pass
    else:
        pred_data.append(landmarks_vec)
    np_test_data = np.array(pred_data)
    a=SUPPORT_VECTOR_MACHINE_clf2.predict(pred_data)
    #cv2.putText(img,'DETECTED FACIAL EXPRESSION : ',(8,30),font,0.7,(0,0,255),2,cv2.LINE_AA)
    #l=len('Facial Expression Detected : ')
    #cv2.putText(img,emotions[a[0]].upper(),(150,60),font,1,(255,0,0),2,cv2.LINE_AA)
    #cv2.imshow('test_image',img)
    #print(emotions[a[0]])


    cv2.waitKey(0)
    cv2.destroyAllWindows()
    return emotions[a[0]]
项目:bLandscapeTools    作者:paxetgloria    | 项目源码 | 文件源码
def checkSurfaceMask(context,cellSize,gridResolution,tileSize,maskResolution):
    def calculateOverlap(cellSize,gridResolution,tileSize,maskResolution):
        def roundToInt( x ):
            return floor(x + 0.5)

        def nearlyInt( x, i ):
            return (abs( x - i ) < 0.000001)

        def check( x ):
            return nearlyInt(x, roundToInt( x ))

        terrainSize = cellSize * gridResolution  
        multiplier = 1
        bestDist = 1000000
        bestMult = -1
        for i in range(0,8):
            landGrid = multiplier * cellSize
            dist = abs(40.0 - landGrid)
            if dist < bestDist:
                bestDist = dist
                bestMult = multiplier
            multiplier *= 2

        subDiv = bestMult
        m_landGrid = subDiv * cellSize #land grid cell size or _landGrid
        totalLandGrids = floor( terrainSize / m_landGrid ) #land grid size or _landRange
        m_gridSize = subDiv * totalLandGrids #terrain grid size or _terrainRange
        m_width = m_height = m_gridSize * cellSize #final terrain size
        defaultOverlap = 16 # minimum overlap
        tileUsable = int(tileSize) - defaultOverlap
        tileUsableMeters = maskResolution * tileUsable
        segmentLGCs = floor( tileUsableMeters / m_landGrid )
        segmentLGCs -= segmentLGCs % 4
        segmentMeters = segmentLGCs * m_landGrid
        segmentPixels = segmentMeters / maskResolution
        actualOverlap = int(tileSize) - segmentPixels
        tilesInRow = ceil( m_width / segmentMeters )
        return actualOverlap, tilesInRow

    from cv2 import imread as cv2imread, imwrite as cv2imwrite

    surfaceMask = cv2imread(context.scene.checkSurfaceMaskPath,1)


    maskWidth = maskHeight = int((cellSize * gridResolution) / maskResolution)
    rgb = zeros((maskWidth,maskHeight,3), uint8)
    alpha = zeros((maskWidth,maskHeight,1), uint8)

    actualOverlap, tilesInRow = calculateOverlap(cellSize,gridResolution,tileSize,maskResolution)

    font = cv2.FONT_HERSHEY_DUPLEX

    print(actualOverlap, tilesInRow)