Python cv2 模块,findChessboardCorners() 实例源码

我们从Python开源项目中,提取了以下24个代码示例,用于说明如何使用cv2.findChessboardCorners()

项目:cvcalib    作者:Algomorph    | 项目源码 | 文件源码
def try_approximate_corners(self, board_dims):
        found, corners = cv2.findChessboardCorners(self.frame, board_dims)
        self.current_image_points = corners
        self.current_board_dims = board_dims
        return found
项目:SelfDrivingCar    作者:aguijarro    | 项目源码 | 文件源码
def get_points():

    # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
    objp = np.zeros((6*8,3), np.float32)
    objp[:,:2] = np.mgrid[0:8, 0:6].T.reshape(-1 , 2)

    # Arrays to store object points and image points from all the images.
    objpoints = [] # 3d points in real world space
    imgpoints = [] # 2d points in image plane.

    # Make a list of calibration images
    images = glob.glob('calibration_wide/GO*.jpg')

    # Step through the list and search for chessboard corners
    for idx, fname in enumerate(images):
        img = cv2.imread(fname)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        # Find the chessboard corners
        ret, corners = cv2.findChessboardCorners(gray, (8,6), None)

        # If found, add object points, image points
        if ret == True:
            objpoints.append(objp)
            imgpoints.append(corners)

            # Draw and display the corners
            cv2.drawChessboardCorners(img, (8,6), corners, ret)
            #write_name = 'corners_found'+str(idx)+'.jpg'
            #cv2.imwrite(write_name, img)
            cv2.imshow('img', img)
            cv2.waitKey(500)

    cv2.destroyAllWindows()
    return objpoints, imgpoints
项目:pycalibrate    作者:reconstruct-on-the-fly    | 项目源码 | 文件源码
def find_points(images):
    pattern_size = (9, 6)
    obj_points = []
    img_points = []

    # Assumed object points relation
    a_object_point = np.zeros((PATTERN_SIZE[1] * PATTERN_SIZE[0], 3),
                              np.float32)
    a_object_point[:, :2] = np.mgrid[0:PATTERN_SIZE[0],
                                     0:PATTERN_SIZE[1]].T.reshape(-1, 2)

    # Termination criteria for sub pixel corners refinement
    stop_criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER,
                     30, 0.001)

    print('Finding points ', end='')
    debug_images = []
    for (image, color_image) in images:
        found, corners = cv.findChessboardCorners(image, PATTERN_SIZE, None)
        if found:
            obj_points.append(a_object_point)
            cv.cornerSubPix(image, corners, (11, 11), (-1, -1), stop_criteria)
            img_points.append(corners)

            print('.', end='')
        else:
            print('-', end='')

        if DEBUG:
            cv.drawChessboardCorners(color_image, PATTERN_SIZE, corners, found)
            debug_images.append(color_image)

        sys.stdout.flush()

    if DEBUG:
        display_images(debug_images, DISPLAY_SCALE)

    print('\nWas able to find points in %s images' % len(img_points))
    return obj_points, img_points


# images is a lis of tuples: (gray_image, color_image)
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials    作者:taochenshh    | 项目源码 | 文件源码
def rgb_callback(self,data):
        try:
            self.rgb_img = self.br.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print(e)

        gray = cv2.cvtColor(self.rgb_img,cv2.COLOR_BGR2GRAY)
        rgb_ret, rgb_corners = cv2.findChessboardCorners(gray, (x_num,y_num),None)
        cv2.namedWindow('rgb_img', cv2.WINDOW_NORMAL)
        cv2.imshow('rgb_img',self.rgb_img)
        cv2.waitKey(5)
        if rgb_ret == True:
            rgb_tempimg = self.rgb_img.copy()
            cv2.cornerSubPix(gray,rgb_corners,(5,5),(-1,-1),criteria)            
            cv2.drawChessboardCorners(rgb_tempimg, (x_num,y_num), rgb_corners,rgb_ret)
            rgb_rvec, self.rgb_tvec, rgb_inliers = cv2.solvePnPRansac(objpoints, rgb_corners, rgb_mtx, rgb_dist)
            self.rgb_rmat, _ = cv2.Rodrigues(rgb_rvec)
            print("The world coordinate system's origin in camera's coordinate system:")
            print("===rgb_camera rvec:")
            print(rgb_rvec)
            print("===rgb_camera rmat:")
            print(self.rgb_rmat)
            print("===rgb_camera tvec:")
            print(self.rgb_tvec)
            print("rgb_camera_shape: ")
            print(self.rgb_img.shape)

            print("The camera origin in world coordinate system:")
            print("===camera rmat:")
            print(self.rgb_rmat.T)
            print("===camera tvec:")
            print(-np.dot(self.rgb_rmat.T, self.rgb_tvec))

            rgb_stream = open("/home/chentao/kinect_calibration/rgb_camera_pose.yaml", "w")
            data = {'rmat':self.rgb_rmat.tolist(), 'tvec':self.rgb_tvec.tolist()}
            yaml.dump(data, rgb_stream)


            cv2.imshow('rgb_img',rgb_tempimg)
            cv2.waitKey(5)
项目:SDcarsLaneDetection    作者:Nazanin1369    | 项目源码 | 文件源码
def corners_unwarp(img, nx, ny, mtx, dist):
    # Use the OpenCV undistort() function to remove distortion
    undist = cv2.undistort(img, mtx, dist, None, mtx)
    # Convert undistorted image to grayscale
    gray = cv2.cvtColor(undist, cv2.COLOR_BGR2GRAY)
    # Search for corners in the grayscaled image
    ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None)

    if ret == True:
        # If we found corners, draw them! (just for fun)
        cv2.drawChessboardCorners(undist, (nx, ny), corners, ret)
        # Choose offset from image corners to plot detected corners
        # This should be chosen to present the result at the proper aspect ratio
        # My choice of 100 pixels is not exact, but close enough for our purpose here
        offset = 100 # offset for dst points
        # Grab the image shape
        img_size = (gray.shape[1], gray.shape[0])

        # For source points I'm grabbing the outer four detected corners
        src = np.float32([corners[0], corners[nx-1], corners[-1], corners[-nx]])
        # For destination points, I'm arbitrarily choosing some points to be
        # a nice fit for displaying our warped result
        # again, not exact, but close enough for our purposes
        dst = np.float32([[offset, offset], [img_size[0]-offset, offset],
                                     [img_size[0]-offset, img_size[1]-offset],
                                     [offset, img_size[1]-offset]])
        # Given src and dst points, calculate the perspective transform matrix
        M = cv2.getPerspectiveTransform(src, dst)
        # Warp the image using OpenCV warpPerspective()
        warped = cv2.warpPerspective(undist, M, img_size)

    # Return the resulting image and matrix
    return warped, M
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials    作者:taochenshh    | 项目源码 | 文件源码
def ir_calib_callback(self,data):
        try:
            self.ir_img = self.mkgray(data)
        except CvBridgeError as e:
            print(e)

        ir_ret, ir_corners = cv2.findChessboardCorners(self.ir_img, (y_num,x_num))
        cv2.imshow('ir_img',self.ir_img)
        cv2.waitKey(5)
        if ir_ret == True:
            ir_tempimg = self.ir_img.copy()
            cv2.cornerSubPix(ir_tempimg,ir_corners,(11,11),(-1,-1),criteria)            
            cv2.drawChessboardCorners(ir_tempimg, (y_num,x_num), ir_corners,ir_ret)
            # ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP)

            depth_stream = open("/home/chentao/kinect_calibration/ir_camera_corners.yaml", "w")
            data = {'corners':ir_corners.tolist()}
            yaml.dump(data, depth_stream)

            cv2.imshow('ir_img',ir_tempimg)
            cv2.waitKey(5)
项目:SelfDrivingCar    作者:aguijarro    | 项目源码 | 文件源码
def corners_unwarp(img, nx, ny, undistorted):
    M = None
    warped = np.copy(img)
    # Use the OpenCV undistort() function to remove distortion
    undist = undistorted
    # Convert undistorted image to grayscale
    gray = cv2.cvtColor(undist, cv2.COLOR_BGR2GRAY)
    # Search for corners in the grayscaled image
    ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None)

    if ret == True:
        # If we found corners, draw them! (just for fun)
        cv2.drawChessboardCorners(undist, (nx, ny), corners, ret)
        # Choose offset from image corners to plot detected corners
        # This should be chosen to present the result at the proper aspect ratio
        # My choice of 100 pixels is not exact, but close enough for our purpose here
        offset = 100 # offset for dst points
        # Grab the image shape
        img_size = (gray.shape[1], gray.shape[0])

        # For source points I'm grabbing the outer four detected corners
        src = np.float32([corners[0], corners[nx-1], corners[-1], corners[-nx]])
        # For destination points, I'm arbitrarily choosing some points to be
        # a nice fit for displaying our warped result
        # again, not exact, but close enough for our purposes
        dst = np.float32([[offset, offset], [img_size[0]-offset, offset],
                                     [img_size[0]-offset, img_size[1]-offset],
                                     [offset, img_size[1]-offset]])
        # Given src and dst points, calculate the perspective transform matrix
        M = cv2.getPerspectiveTransform(src, dst)
        # Warp the image using OpenCV warpPerspective()
        warped = cv2.warpPerspective(undist, M, img_size)

    # Return the resulting image and matrix
    return warped, M
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials    作者:taochenshh    | 项目源码 | 文件源码
def ir_callback(self,data):
        try:
            self.ir_img = self.mkgray(data)
        except CvBridgeError as e:
            print(e)

        ir_ret, ir_corners = cv2.findChessboardCorners(self.ir_img, (x_num,y_num))
        cv2.namedWindow('ir_img', cv2.WINDOW_NORMAL)
        cv2.imshow('ir_img',self.ir_img)
        cv2.waitKey(5)
        if ir_ret == True:
            ir_tempimg = self.ir_img.copy()
            cv2.cornerSubPix(ir_tempimg,ir_corners,(11,11),(-1,-1),criteria)            
            cv2.drawChessboardCorners(ir_tempimg, (x_num,y_num), ir_corners,ir_ret)
            # ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP)
            ir_rvec, self.ir_tvec, ir_inliers = cv2.solvePnPRansac(objpoints, ir_corners, depth_mtx, depth_dist)
            self.ir_rmat, _ = cv2.Rodrigues(ir_rvec)

            print("The world coordinate system's origin in camera's coordinate system:")
            print("===ir_camera rvec:")
            print(ir_rvec)
            print("===ir_camera rmat:")
            print(self.ir_rmat)
            print("===ir_camera tvec:")
            print(self.ir_tvec)
            print("ir_camera_shape: ")
            print(self.ir_img.shape)

            print("The camera origin in world coordinate system:")
            print("===camera rmat:")
            print(self.ir_rmat.T)
            print("===camera tvec:")
            print(-np.dot(self.ir_rmat.T, self.ir_tvec))

            depth_stream = open("/home/chentao/kinect_calibration/ir_camera_pose.yaml", "w")
            data = {'rmat':self.ir_rmat.tolist(), 'tvec':self.ir_tvec.tolist()}
            yaml.dump(data, depth_stream)


            cv2.imshow('ir_img',ir_tempimg)
            cv2.waitKey(5)
项目:camera_calibration_frontend    作者:groundmelon    | 项目源码 | 文件源码
def _get_corners(img, board, refine = True, checkerboard_flags=0):
    """
    Get corners for a particular chessboard for an image
    """
    h = img.shape[0]
    w = img.shape[1]
    if len(img.shape) == 3 and img.shape[2] == 3:
        mono = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    else:
        mono = img
    (ok, corners) = cv2.findChessboardCorners(mono, (board.n_cols, board.n_rows), flags = cv2.CALIB_CB_ADAPTIVE_THRESH |
                                              cv2.CALIB_CB_NORMALIZE_IMAGE | checkerboard_flags)
    if not ok:
        return (ok, corners)

    # If any corners are within BORDER pixels of the screen edge, reject the detection by setting ok to false
    # NOTE: This may cause problems with very low-resolution cameras, where 8 pixels is a non-negligible fraction
    # of the image size. See http://answers.ros.org/question/3155/how-can-i-calibrate-low-resolution-cameras
    BORDER = 8
    if not all([(BORDER < corners[i, 0, 0] < (w - BORDER)) and (BORDER < corners[i, 0, 1] < (h - BORDER)) for i in range(corners.shape[0])]):
        ok = False

    if refine and ok:
        # Use a radius of half the minimum distance between corners. This should be large enough to snap to the
        # correct corner, but not so large as to include a wrong corner in the search window.
        min_distance = float("inf")
        for row in range(board.n_rows):
            for col in range(board.n_cols - 1):
                index = row*board.n_rows + col
                min_distance = min(min_distance, _pdist(corners[index, 0], corners[index + 1, 0]))
        for row in range(board.n_rows - 1):
            for col in range(board.n_cols):
                index = row*board.n_rows + col
                min_distance = min(min_distance, _pdist(corners[index, 0], corners[index + board.n_cols, 0]))
        radius = int(math.ceil(min_distance * 0.5))
        cv2.cornerSubPix(mono, corners, (radius,radius), (-1,-1),
                                      ( cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1 ))

    return (ok, corners)
项目:cvcalib    作者:Algomorph    | 项目源码 | 文件源码
def try_approximate_corners_blur(self, board_dims, sharpness_threshold):
        sharpness = cv2.Laplacian(self.frame, cv2.CV_64F).var()
        if sharpness < sharpness_threshold:
            return False
        found, corners = cv2.findChessboardCorners(self.frame, board_dims)
        self.current_image_points = corners
        return found
项目:imgProcessor    作者:radjkarl    | 项目源码 | 文件源码
def _findChessboard(self):
        # Find the chess board corners
        flags = cv2.CALIB_CB_FAST_CHECK
        if self._detect_sensible:
            flags = (cv2.CALIB_CB_FAST_CHECK |
                     cv2.CALIB_CB_ADAPTIVE_THRESH |
                     cv2.CALIB_CB_FILTER_QUADS |
                     cv2.CALIB_CB_NORMALIZE_IMAGE)

        (didFindCorners, corners) = cv2.findChessboardCorners(
            self.img, self.opts['size'], flags=flags
        )
        if didFindCorners:
            # further refine corners, corners is updatd in place
            cv2.cornerSubPix(self.img, corners, (11, 11), (-1, -1),
                             # termination criteria for corner estimation for
                             # chessboard method
                             (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
                              30, 0.001)
                             )  # returns None
        return didFindCorners, corners
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials    作者:taochenshh    | 项目源码 | 文件源码
def rgb_calib_callback(self,data):
        try:
            self.rgb_img = self.br.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print(e)

        gray = cv2.cvtColor(self.rgb_img,cv2.COLOR_BGR2GRAY)
        rgb_ret, rgb_corners = cv2.findChessboardCorners(gray, (y_num,x_num),None)

        cv2.imshow('rgb_img',self.rgb_img)
        cv2.waitKey(5)
        if rgb_ret == True:
            rgb_tempimg = self.rgb_img.copy()
            cv2.cornerSubPix(gray,rgb_corners,(11,11),(-1,-1),criteria)            
            cv2.drawChessboardCorners(rgb_tempimg, (y_num,x_num), rgb_corners,rgb_ret)

            rgb_stream = open("/home/chentao/kinect_calibration/rgb_camera_corners.yaml", "w")
            data = {'corners':rgb_corners.tolist()}
            yaml.dump(data, rgb_stream)

            cv2.imshow('rgb_img',rgb_tempimg)
            cv2.waitKey(5)
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials    作者:taochenshh    | 项目源码 | 文件源码
def rgb_callback(self,data):
        try:
            img = self.br.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print(e)

        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        # ret, corners = cv2.findChessboardCorners(gray, (x_num,y_num),None)
        ret, corners = cv2.findChessboardCorners(img, (x_num,y_num))
        cv2.imshow('img',img)
        cv2.waitKey(5)
        if ret == True:
            cv2.cornerSubPix(gray,corners,(5,5),(-1,-1),criteria)
            tempimg = img.copy()
            cv2.drawChessboardCorners(tempimg, (x_num,y_num), corners,ret)
            # ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP)
            rvec, tvec, inliers = cv2.solvePnPRansac(objpoints, corners, rgb_mtx, rgb_dist)
            print("rvecs:")
            print(rvec)
            print("tvecs:")
            print(tvec)
            # project 3D points to image plane
            imgpts, jac = cv2.projectPoints(axis, rvec, tvec, rgb_mtx, rgb_dist)

            imgpts = np.int32(imgpts).reshape(-1,2)

            cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[1]),[255,0,0],4)  #BGR
            cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[2]),[0,255,0],4)
            cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[3]),[0,0,255],4)

            cv2.imshow('img',tempimg)
            cv2.waitKey(5)
项目:duo3d_ros    作者:ethz-ait    | 项目源码 | 文件源码
def extract_checkerboard_and_draw_corners(self, image, chbrd_size):
        image = CvBridge().imgmsg_to_cv2(image, 'mono8')
        image_color = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
        ret, corners = cv2.findChessboardCorners(image_color, chbrd_size)

        if not ret:
            cv2.putText(image_color, 'Checkerboard not found', (0, self.res_height - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255))

        cv2.drawChessboardCorners(image_color, chbrd_size, corners, ret)

        return ret, corners, image_color
项目:esys-pbi    作者:fsxfreak    | 项目源码 | 文件源码
def chessboard(image, pattern_size=(9,5)):
    status, corners = cv2.findChessboardCorners(image, pattern_size, flags=4)
    if status:
        mean = corners.sum(0)/corners.shape[0]
        # mean is [[x,y]]
        return mean[0], corners
    else:
        return None
项目:cvcalib    作者:Algomorph    | 项目源码 | 文件源码
def load_frame_images(self):
        """
        Load images (or image pairs) from self.full_frame_folder_path
        """
        print("Loading frames from '{0:s}'".format(self.full_frame_folder_path))
        all_files = [f for f in os.listdir(self.full_frame_folder_path)
                     if osp.isfile(osp.join(self.full_frame_folder_path, f)) and f.endswith(".png")]
        all_files.sort()

        usable_frame_ct = sys.maxsize

        frame_number_sets = []

        for video in self.videos:
            # assume matching numbers in corresponding left & right files
            files = [f for f in all_files if f.startswith(video.name)]
            files.sort()  # added to be explicit

            cam_frame_ct = 0
            frame_numbers = []
            for ix_pair in range(len(files)):
                frame = cv2.imread(osp.join(self.full_frame_folder_path, files[ix_pair]))
                frame_number = int(re.search(r'\d\d\d\d', files[ix_pair]).group(0))
                frame_numbers.append(frame_number)
                found, corners = cv2.findChessboardCorners(frame, self.board_dims)
                if not found:
                    raise ValueError("Could not find corners in image '{0:s}'".format(files[ix_pair]))
                grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                cv2.cornerSubPix(grey, corners, (11, 11), (-1, -1), self.criteria_subpix)
                video.image_points.append(corners)
                video.usable_frames[frame_number] = ix_pair
                cam_frame_ct += 1
            usable_frame_ct = min(usable_frame_ct, cam_frame_ct)
            frame_number_sets.append(frame_numbers)

        if len(self.videos) > 1:
            # check that all cameras have the same frame number sets
            if len(frame_number_sets[0]) != len(frame_number_sets[1]):
                raise ValueError(
                    "There are some non-paired frames in folder '{0:s}'".format(self.full_frame_folder_path))
            for i_fn in range(len(frame_number_sets[0])):
                fn0 = frame_number_sets[0][i_fn]
                fn1 = frame_number_sets[1][i_fn]
                if fn0 != fn1:
                    raise ValueError("There are some non-paired frames in folder '{0:s}'." +
                                     " Check frame {1:d} for camera {2:s} and frame {3:d} for camera {4:s}."
                                     .format(self.full_frame_folder_path,
                                             fn0, self.videos[0].name,
                                             fn1, self.videos[1].name))

        for i_frame in range(usable_frame_ct):
            self.object_points.append(self.board_object_corner_set)
        return usable_frame_ct
项目:deeptracking    作者:lvsn    | 项目源码 | 文件源码
def detect(self, img):
        if len(img.shape) > 2:
            raise Exception("ChessboardDetector uses gray image as input")
        detection = None
        ret, corners = cv2.findChessboardCorners(img, self.chess_shape, None)
        if ret:
            ret, rvec, tvec = cv2.solvePnP(self.obj_points, corners, self.camera.matrix(), np.array([0, 0, 0, 0, 0]))
            # invert axis convention
            rvec[1] = -rvec[1]
            rvec[2] = -rvec[2]
            tvec[1] = -tvec[1]
            tvec[2] = -tvec[2]
            detection = Transform()
            detection.matrix[0:3, 0:3] = cv2.Rodrigues(rvec)[0]
            detection.set_translation(tvec[0] / 1000, tvec[1] / 1000, tvec[2] / 1000)
        return detection
项目:calcam    作者:euratom-software    | 项目源码 | 文件源码
def detect_corners(self):

        self.parent.app.setOverrideCursor(qt.QCursor(qt.Qt.WaitCursor))
        self.chessboard_status = []
        self.chessboard_points_2D = [np.zeros([ (self.chessboard_squares_x.value() - 1)*(self.chessboard_squares_y.value() - 1),2]) for i in range(len(self.images))]
        self.n_chessboard_points = (self.chessboard_squares_x.value() - 1, self.chessboard_squares_y.value() - 1 )
        for imnum in range(len(self.images)):
            self.status_text.setText('<b>Detecting chessboard pattern in image {:d} / {:d}...</b>'.format(imnum,len(self.images)))
            self.parent.app.processEvents()
            status,points = cv2.findChessboardCorners( self.images[imnum], self.n_chessboard_points, flags=cv2.CALIB_CB_ADAPTIVE_THRESH )
            self.chessboard_status.append(not status)
            if status:
                for j,point in enumerate(points):
                    self.chessboard_points_2D[imnum][j,:] = point[0]
        self.status_text.setText('')
        self.parent.app.restoreOverrideCursor()        
        if np.all(self.chessboard_status):
            dialog = qt.QMessageBox(self)
            dialog.setStandardButtons(qt.QMessageBox.Ok)
            dialog.setTextFormat(qt.Qt.RichText)
            dialog.setWindowTitle('Calcam - No Chessboards Detected')
            dialog.setText("No {:d} x {:d} square chessboard patterns were found in the images.".format(self.chessboard_squares_x.value(),self.chessboard_squares_y.value()))
            dialog.setInformativeText("Is the number of squares set correctly?")
            dialog.setIcon(qt.QMessageBox.Warning)
            dialog.exec_()
        elif np.any(self.chessboard_status):
            dialog = qt.QMessageBox(self)
            dialog.setStandardButtons(qt.QMessageBox.Ok)
            dialog.setTextFormat(qt.Qt.RichText)
            dialog.setWindowTitle('Calcam - Chessboard Detection')
            dialog.setText("A {:d} x {:d} square chessboard pattern could not be detected in the following {:d} of {:d} images, which will therefore not be included as additional chessboard constraints:".format(self.chessboard_squares_x.value(),self.chessboard_squares_y.value(),np.count_nonzero(self.chessboard_status),len(self.images)))
            dialog.setInformativeText('<br>'.join(['[#{:d}] '.format(i+1) + self.filenames[i] for i in range(len(self.filenames)) if self.chessboard_status[i] ]))
            dialog.setIcon(qt.QMessageBox.Warning)
            dialog.exec_()                

        self.chessboard_status = [not status for status in self.chessboard_status]
        self.detection_run = True
        self.update_image_display()
        if np.any(self.chessboard_status):
            self.apply_button.setEnabled(True)
            self.status_text.setText('<b>Chessboard patterns detected successfully in {:d} images. Click Apply to use these in Calcam.</b>'.format(np.count_nonzero(self.chessboard_status),len(self.images)))
        else:
            self.apply_button.setEnabled(False)
            self.status_text.setText('')
项目:SelfDrivingCar    作者:aguijarro    | 项目源码 | 文件源码
def main():
    # prepare object points
    nx = 8#TODO: enter the number of inside corners in x
    ny = 6#TODO: enter the number of inside corners in y

    # Make a list of calibration images
    fname = './calibration_wide/GOPR0058.jpg'
    img = cv2.imread(fname)
    plt.imshow(img)

    # Convert to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Find the chessboard corners
    ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None)

    # If found, draw corners
    if ret == True:
        # Draw and display the corners
        cv2.drawChessboardCorners(img, (nx, ny), corners, ret)
        plt.imshow(img)
        plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def draw_chessboard_corners(image):
    # Find the chess board corners
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    ret, corners = cv2.findChessboardCorners(gray_image, (9, 6), None)

    # Draw image
    if ret is True:
        criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
                    30,
                    0.001)
        corners2 = cv2.cornerSubPix(gray_image,
                                    corners,
                                    (11, 11),
                                    (-1, -1),
                                    criteria)
        img = cv2.drawChessboardCorners(image,
                                        (9, 6),
                                        corners2,
                                        ret)

    return img
项目:perception    作者:BerkeleyAutomation    | 项目源码 | 文件源码
def find_chessboard(self,debug=False):
        """
        Finds the cheeseboard in the image and recovers each corner

        Parameters
        ----------
        debug: Boolean
            If True, shows image with cheeseboard corners overlayed (Defaul False)

        Returns
        -------
        numpy array:
            (2,54) shape array that is each corner in the chessboard

        """
        ic = np.array([self.Row,self.Column])
        img = self.bc.read_raw()
        ret,ic = cv2.findChessboardCorners(img,(6,9))

        ic_np = np.zeros([2,54])

        for i in range(self.Column*self.Row):
            ic_np[:,i] = ic[i][0,:]

        if(debug):
            for i in range(len(ic)):
                p = ic[i]
                img[int(p[0][1]),int(p[0][0]),2] = 255

            cv2.imshow('debug',img)
            cv2.waitKey(30)
            IPython.embed()

        return ic_np
项目:diy_driverless_car_ROS    作者:wilselby    | 项目源码 | 文件源码
def camera_cal(self, image):

        # termination criteria
        criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

        nx = 8
        ny = 6

        dst = np.copy(image) 

        # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
        objp = np.zeros((ny * nx, 3), np.float32)
        objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2)

        # Arrays to store object points and image points from all the images.
        objpoints = [] # 3d points in real world space
        imgpoints = [] # 2d points in image plane.

        # Search for chessboard corners
        grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        #ret_thresh,  mask = cv2.threshold(grey, 30, 255, cv2.THRESH_BINARY)

        ret, corners = cv2.findChessboardCorners(image, (nx, ny), None)  #flags=(cv2.cv.CV_CALIB_CB_ADAPTIVE_THRESH + cv2.cv.CV_CALIB_CB_FILTER_QUADS))        

        # If found, add object points, image points
        if ret == True:
            objpoints.append(objp)           
            cv2.cornerSubPix(grey,corners, (11,11), (-1,-1), criteria)
            imgpoints.append(corners)
            self.calibrated = True
            print ("FOUND!")

            #Draw and display the corners
            cv2.drawChessboardCorners(image, (nx, ny), corners, ret)  

            # Do camera calibration given object points and image points
            ret, self.mtx, self.dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, grey.shape[::-1], None, None)        

            # Save the camera calibration result for later use (we won't worry about rvecs / tvecs)
            dist_pickle = {}
            dist_pickle["mtx"] = self.mtx
            dist_pickle["dist"] = self.dist
            dist_pickle['objpoints'] = objpoints
            dist_pickle['imgpoints'] = imgpoints
            pickle.dump( dist_pickle, open( "/home/wil/ros/catkin_ws/src/av_sim/computer_vision/camera_calibration/data/camera_cal_pickle.p", "wb" ) )

         #else:
             #print("Searching...")

        return image
项目:perception    作者:BerkeleyAutomation    | 项目源码 | 文件源码
def find_chessboard(self, sx=6, sy=9):
        """Finds the corners of an sx X sy chessboard in the image.

        Parameters
        ----------
        sx : int
            Number of chessboard corners in x-direction.
        sy : int
            Number of chessboard corners in y-direction.

        Returns
        -------
        :obj:`list` of :obj:`numpy.ndarray`
            A list containing the 2D points of the corners of the detected
            chessboard, or None if no chessboard found.
        """
        # termination criteria
        criteria = (cv2.TERM_CRITERIA_EPS +
                    cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

        # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
        objp = np.zeros((sx * sy, 3), np.float32)
        objp[:, :2] = np.mgrid[0:sx, 0:sy].T.reshape(-1, 2)

        # Arrays to store object points and image points from all the images.
        objpoints = []  # 3d point in real world space
        imgpoints = []  # 2d points in image plane.

        # create images
        img = self.data.astype(np.uint8)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        # Find the chess board corners
        ret, corners = cv2.findChessboardCorners(gray, (sx, sy), None)

        # If found, add object points, image points (after refining them)
        if ret:
            objpoints.append(objp)
            cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
            imgpoints.append(corners)

            if corners is not None:
                return corners.squeeze()
        return None
项目:tefla    作者:openAGI    | 项目源码 | 文件源码
def calculate_camera_calibration(calib_path, rows, cols, cal_image_size):
    """Calculates the camera calibration based on chessboard images.

    Args:
        calib_path: calibration data (imgs) dir path
        rows: number of rows on chessboard
        cols: number of columns on chessboard

    Returns:
        a `dict` with calibration points
    """
    objp = np.zeros((rows * cols, 3), np.float32)
    objp[:, :2] = np.mgrid[0:cols, 0:rows].T.reshape(-1, 2)

    objpoints = []
    imgpoints = []

    images = glob(calib_path)
    cal_images = np.zeros((len(images), *cal_image_size), dtype=np.uint8)

    successfull_cnt = 0
    for idx, fname in enumerate(tqdm(images, desc='Processing image')):
        img = scipy.misc.imread(fname)
        if img.shape[0] != cal_image_size[0] or img.shape[1] != cal_image_size[1]:
            img = scipy.misc.imresize(img, cal_image_size)

        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, (cols, rows), None)

        if ret:
            successfull_cnt += 1

            objpoints.append(objp)
            imgpoints.append(corners)

            img = cv2.drawChessboardCorners(img, (cols, rows), corners, ret)
            cal_images[idx] = img

    print("%s/%s camera calibration images processed." %
          (successfull_cnt, len(images)))

    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
        objpoints, imgpoints, cal_image_size[:-1], None, None)

    calibration = {'objpoints': objpoints,
                   'imgpoints': imgpoints,
                   'cal_images': cal_images,
                   'mtx': mtx,
                   'dist': dist,
                   'rvecs': rvecs,
                   'tvecs': tvecs}

    return calibration