Python cv2 模块,CV_LOAD_IMAGE_GRAYSCALE 实例源码

我们从Python开源项目中,提取了以下26个代码示例,用于说明如何使用cv2.CV_LOAD_IMAGE_GRAYSCALE

项目:DHP    作者:YuhangSong    | 项目源码 | 文件源码
def load_heatmaps(self, name):

        heatmaps = []
        for step in range(self.step_total):

            try:
                file_name = '../../'+self.data_base+'/'+name+'/'+self.env_id+'_'+str(step)+'.jpg'
                temp = cv2.imread(file_name, cv2.CV_LOAD_IMAGE_GRAYSCALE)
                temp = cv2.resize(temp,(self.heatmap_width, self.heatmap_height))
                temp = temp / 255.0
                heatmaps += [temp]
            except Exception,e:
                print Exception,":",e
                continue

        print('load heatmaps: '+name+' done, size: '+str(np.shape(heatmaps)))

        return heatmaps
项目:caffe-tools    作者:davidstutz    | 项目源码 | 文件源码
def test_read_mnist(self):
        """
        Tests reading from the MNIST LMDB.
        """

        lmdb_path = 'tests/mnist_test_lmdb'
        lmdb = tools.lmdb_io.LMDB(lmdb_path)

        keys = lmdb.keys(5)
        for key in keys:
            image, label, key = lmdb.read(key)

            image_path = 'tests/mnist_test/' + key + '.png'
            assert os.path.exists(image_path)            

            image = cv2.imread(image_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)

            for i in range(image.shape[0]):
                for j in range(image.shape[1]):
                    self.assertEqual(image[i, j], image[i, j])
项目:maze-vision    作者:jpschnel    | 项目源码 | 文件源码
def main(input_pic):
    img = cv.imread(input_pic,cv.CV_LOAD_IMAGE_GRAYSCALE)
    img=sp.gaussian_filter(img,sigma=3)
    img= imresize(img,((len(img)/10),(len(img[0])/10)))
    img_arr=np.asarray(img,dtype="int32")

    LoG_arr=LoG_Filter(img_arr)
    cv.imwrite('LoG_image.jpg',LoG_arr)
    LoG_arr=cv.imread('LoG_image.jpg',cv.CV_LOAD_IMAGE_GRAYSCALE)
    Hist=genHistogram(LoG_arr)
    #print(Hist)
    for i in range(0,len(LoG_arr)):
        for j in range(0,len(LoG_arr[0])):
             if LoG_arr[i][j]<200:
                 LoG_arr[i][j]=0
             else:
                 LoG_arr[i][j]=255

    cv.imwrite('LoG_image.jpg',LoG_arr)    
    #img_new=cv.imread('LoG_image.jpg',cv.CV_LOAD_IMAGE_GRAYSCALE)
项目:TF-FaceLandmarkDetection    作者:mariolew    | 项目源码 | 文件源码
def generate_hdf5(data, output='shit.h5'):
    lines = []
    dst = 'tf_test/'
    imgs = []
    labels = []
    for (imgPath, bbx, landmarks) in data:
        im = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
        imgName = imgPath.split('/')[-1][:-4]

        bbx_sc = bbx.bbxScale(im.shape, scale=1.1)
        #print bbx_sc.x, bbx_sc.y, bbx_sc.w, bbx_sc.h
        im_sc = im[bbx_sc.y:bbx_sc.y+bbx_sc.h, bbx_sc.x:bbx_sc.x+bbx_sc.w]
        im_sc = cv2.resize(im_sc, (39, 39))
        imgs.append(im_sc.reshape(39, 39, 1))
        name = dst+imgName+'sc.jpg'
        lm_sc = bbx_sc.normalizeLmToBbx(landmarks)
        labels.append(lm_sc.reshape(10))
        lines.append(name + ' ' + ' '.join(map(str, lm_sc.flatten())) + '\n')
    imgs, labels = np.asarray(imgs), np.asarray(labels)
    imgs = processImage(imgs)
    with h5py.File('shit.h5', 'w') as h5:
        h5['data'] = imgs.astype(np.float32)
        h5['landmark'] = labels.astype(np.float32)
项目:DeepLandmark    作者:SakuraCoder    | 项目源码 | 文件源码
def E():
    data = getDataFromTxt(TXT)
    error = np.zeros((len(data), 3))
    for i in range(len(data)):
        imgPath, bbox, landmarkGt = data[i]
        landmarkGt = landmarkGt[2:, :]
        img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
        assert(img is not None)
        logger("process %s" % imgPath)

        landmarkP = NM(img, bbox)

        # real landmark
        landmarkP = bbox.reprojectLandmark(landmarkP)
        landmarkGt = bbox.reprojectLandmark(landmarkGt)
        error[i] = evaluateError(landmarkGt, landmarkP, bbox)
    return error
项目:DeepLandmark    作者:SakuraCoder    | 项目源码 | 文件源码
def E():
    data = getDataFromTxt(TXT)
    error = np.zeros((len(data), 3))
    for i in range(len(data)):
        imgPath, bbox, landmarkGt = data[i]
        landmarkGt = landmarkGt[:3, :]
        img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
        assert(img is not None)
        logger("process %s" % imgPath)

        landmarkP = EN(img, bbox)

        # real landmark
        landmarkP = bbox.reprojectLandmark(landmarkP)
        landmarkGt = bbox.reprojectLandmark(landmarkGt)
        error[i] = evaluateError(landmarkGt, landmarkP, bbox)
    return error
项目:DeepLandmark    作者:SakuraCoder    | 项目源码 | 文件源码
def E():

    data = getDataFromTxt(TXT)
    error = np.zeros((len(data), 5))
    for i in range(len(data)):
        imgPath, bbox, landmarkGt = data[i]
        img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
        assert(img is not None)
        logger("process %s" % imgPath)

        landmarkP = getResult(img, bbox)

        # real landmark
        landmarkP = bbox.reprojectLandmark(landmarkP)
        landmarkGt = bbox.reprojectLandmark(landmarkGt)
        error[i] = evaluateError(landmarkGt, landmarkP, bbox)
    return error
项目:DeepLandmark    作者:SakuraCoder    | 项目源码 | 文件源码
def E():

    data = getDataFromTxt(TXT)
    error = np.zeros((len(data), 5))
    for i in range(len(data)):
        imgPath, bbox, landmarkGt = data[i]
        img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
        assert(img is not None)
        logger("process %s" % imgPath)

        landmarkP = getResult(img, bbox)

        # real landmark
        landmarkP = bbox.reprojectLandmark(landmarkP)
        landmarkGt = bbox.reprojectLandmark(landmarkGt)
        error[i] = evaluateError(landmarkGt, landmarkP, bbox)
    return error
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def decode(self, msg): 
        fn = os.path.join(self.directory_, msg)
        if os.path.exists(fn): 
            im = cv2.imread(fn, 
                            cv2.CV_LOAD_IMAGE_COLOR if self.color_ \
                            else cv2.CV_LOAD_IMAGE_GRAYSCALE)
            return im_resize(im, shape=self.shape_)
        else: 
            raise Exception('File does not exist')


# Basic type for image annotations
项目:Emotion-Recognition    作者:Shujathlive    | 项目源码 | 文件源码
def format_image(image):
  if len(image.shape) > 2 and image.shape[2] == 3:
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  else:
    image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
  faces = cascade_classifier.detectMultiScale(
      image,
      scaleFactor = 1.3,
      minNeighbors = 5
  )
  # None is we don't found an image
  if not len(faces) > 0:
    return None
  max_area_face = faces[0]
  for face in faces:
    if face[2] * face[3] > max_area_face[2] * max_area_face[3]:
      max_area_face = face
  # Chop image to face
  face = max_area_face
  image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]
  # Resize image to network size
  try:
    image = cv2.resize(image, (SIZE_FACE, SIZE_FACE), interpolation = cv2.INTER_CUBIC) / 255.
  except Exception:
    print("[+] Problem during resize")
    return None
  # cv2.imshow("Lol", image)
  # cv2.waitKey(0)
  return image

# Load Model
项目:face_autoencoder    作者:VieVie31    | 项目源码 | 文件源码
def load_image_vector(img_path):
    try:
        M = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
    except:
        read_pgm(img_path)
    M = cv2.resize(M, (IM_WIDTH, IM_HEIGHT))
    M = M.reshape((1, IM_AREA))
    return M[0]
项目:Emotion-detection    作者:atulapra    | 项目源码 | 文件源码
def format_image(image):
    """
    Function to format frame
    """
    if len(image.shape) > 2 and image.shape[2] == 3:
        # determine whether the image is color
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        # Image read from buffer
        image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)

    faces = cascade_classifier.detectMultiScale(image,scaleFactor = 1.3 ,minNeighbors = 5)

    if not len(faces) > 0:
        return None

    # initialize the first face as having maximum area, then find the one with max_area
    max_area_face = faces[0]
    for face in faces:
        if face[2] * face[3] > max_area_face[2] * max_area_face[3]:
            max_area_face = face
    face = max_area_face

    # extract ROI of face
    image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]

    try:
        # resize the image so that it can be passed to the neural network
        image = cv2.resize(image, (48,48), interpolation = cv2.INTER_CUBIC) / 255.
    except Exception:
        print("----->Problem during resize")
        return None

    return image

# Initialize object of EMR class
项目:rec-attend-public    作者:renmengye    | 项目源码 | 文件源码
def get_full_size_labels(self, img_ids, timespan=None):
    """Get full sized labels."""
    if timespan is None:
      timespan = self.get_default_timespan()
    with h5py.File(self.h5_fname, 'r') as h5f:
      num_ex = len(img_ids)
      y_full = []
      for kk, ii in enumerate(img_ids):
        key = self.get_str_id(ii)
        data_group = h5f[key]
        if 'label_segmentation_full_size' in data_group:
          y_gt_group = data_group['label_segmentation_full_size']
          num_obj = len(y_gt_group.keys())
          y_full_kk = None
          for jj in xrange(min(num_obj, timespan)):
            y_full_jj_str = y_gt_group['{:02d}'.format(jj)][:]
            y_full_jj = cv2.imdecode(
                y_full_jj_str, cv2.CV_LOAD_IMAGE_GRAYSCALE).astype('float32')
            if y_full_kk is None:
              y_full_kk = np.zeros(
                  [timespan, y_full_jj.shape[0], y_full_jj.shape[1]])
            y_full_kk[jj] = y_full_jj
          y_full.append(y_full_kk)
        else:
          y_full.append(np.zeros([timespan] + list(data_group['orig_size'][:])))
    return y_full
项目:cityscapes-api    作者:renmengye    | 项目源码 | 文件源码
def get_full_size_labels(self, img_ids, timespan=None):
    """Get full sized labels."""
    if timespan is None:
      timespan = self.get_default_timespan()
    with h5py.File(self.h5_fname, "r") as h5f:
      num_ex = len(img_ids)
      y_full = []
      for kk, ii in enumerate(img_ids):
        key = self.get_str_id(ii)
        data_group = h5f[key]
        if "label_ins_seg_full" in data_group:
          y_gt_group = data_group["label_ins_seg_full"]
          num_obj = len(y_gt_group.keys())
          y_full_kk = None
          for jj in range(min(num_obj, timespan)):
            y_full_jj_str = y_gt_group["{:03d}".format(jj)][:]
            y_full_jj = cv2.imdecode(
                y_full_jj_str, cv2.CV_LOAD_IMAGE_GRAYSCALE).astype(np.float32)
            if y_full_kk is None:
              y_full_kk = np.zeros(
                  [timespan, y_full_jj.shape[0], y_full_jj.shape[1]])
            y_full_kk[jj] = y_full_jj
          y_full.append(y_full_kk)
        else:
          y_full.append(np.zeros([timespan] + list(data_group["orig_size"][:])))
    return y_full
项目:steganalysis_with_CNN_and_SRM    作者:rcouturier    | 项目源码 | 文件源码
def read_pgm(filename):
    img1 = cv2.imread(filename, cv2.CV_LOAD_IMAGE_GRAYSCALE)
    h, w = img1.shape[:2]
    vis0 = np.zeros((h,w), np.float32)
    vis0[:h, :w] = img1
    return vis0


#This method is used to read cover and stego images.
#We consider that stego images can be steganographied with differents keys (in practice this seems to be inefficient...)
项目:papacamera    作者:340StarObserver    | 项目源码 | 文件源码
def calculate_feature(bin_data):
    """
    calculate the feature data of an image

    parameter :
        'bin_data' is the binary stream format of an image
    return value :
        a tuple of ( keypoints, descriptors, (height,width) )
        keypoints is like [ pt1, pt2, pt3, ... ]
        descriptors is a numpy array
    """
    buff=numpy.frombuffer(bin_data,numpy.uint8)
    img_obj=cv2.imdecode(buff,cv2.CV_LOAD_IMAGE_GRAYSCALE)
    surf=cv2.FeatureDetector_create("SURF")
    surf.setInt("hessianThreshold",400)
    surf_extractor=cv2.DescriptorExtractor_create("SURF")
    keypoints=surf.detect(img_obj,None)
    keypoints,descriptors=surf_extractor.compute(img_obj,keypoints)
    res_keypoints=[]
    for point in keypoints:
        res_keypoints.append(point.pt)
    del buff
    del surf
    del surf_extractor
    del keypoints
    return res_keypoints,numpy.array(descriptors),img_obj.shape
项目:Kinect-ASUS-Xtion-Pro-Live-Calibration-Tutorials    作者:taochenshh    | 项目源码 | 文件源码
def __init__(self):

        self.br = CvBridge()

        # If you subscribe /camera/depth_registered/hw_registered/image_rect topic, the depth image and rgb image are 
        # already registered. So you don't need to call register_depth_to_rgb()
        # self.depth_image_sub = rospy.Subscriber("/camera/depth_registered/hw_registered/image_rect",Image,self.depth_callback)

        self.depth_image_sub = rospy.Subscriber("/camera/depth/image_rect",Image,self.depth_callback)
        self.rgb_image_sub = rospy.Subscriber("/camera/rgb/image_rect_color",Image,self.rgb_callback)
        self.ir_img = None
        self.rgb_img = None

        self.rgb_rmat = None
        self.rgb_tvec = None
        self.ir_rmat = None
        self.ir_tvec = None

        self.ir_to_rgb_rmat = None
        self.ir_to_rgb_tvec = None
        self.depth_image = None
        self.rgb_image = None

        self.load_extrinsics()
        self.load_intrinsics()
        self.depth_image = None
        self.rgb_image = None
        self.count = 0
        # self.depth_image = cv2.imread("/home/chentao/depth.png", cv2.CV_LOAD_IMAGE_GRAYSCALE)
        # self.rgb_image = cv2.imread("/home/chentao/rgb.png")
项目:ImageSteganography    作者:AhmedAtef07    | 项目源码 | 文件源码
def convert_to_binary_image(img_path, preview):
    img = cv2.imread(img_path)
    if preview: _preview_image("Original Message Image", img, keep_open=True)

    img_gray = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
    if preview: _preview_image("Gray Scale Message Image", img_gray, keep_open=True)

    (thresh, img_bw) = cv2.threshold(img_gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    if preview:  _preview_image("Black & White Message Image", img_bw)

    return img_bw
项目:wi_wacv14    作者:VChristlein    | 项目源码 | 文件源码
def compute(i):
        img_file = files[i]
        img = cv2.imread(img_file, cv2.CV_LOAD_IMAGE_GRAYSCALE)
        if img is None:
            print 'img {} is None, path correct? --> skip'.format(img_file)
            return

        kpts = fe.detect(img)
        _, descriptors = fe.extract(img, kpts)

        if descriptors is None or len(descriptors) == 0:
            print 'WARNING: no descriptors extracted, skip image', img_file
            sys.exit(1)

        # Hellinger normalization
        descriptors += np.finfo(np.float32).eps
        descriptors /= np.sum(descriptors, axis=1)[:,np.newaxis]
        descriptors = np.sqrt(descriptors)

        # output
        new_basename = os.path.join(args.outputfolder,
                                    os.path.basename(os.path.splitext(img_file)[0]))
        feat_filename = new_basename + '_' + args.detector \
                        + '_' + args.feature + '.pkl.gz'
        with gzip.open(feat_filename, 'wb') as f:
            cPickle.dump(descriptors, f, -1)

        progress.update(i+1)
项目:maliciou_code_cnn    作者:playgood111    | 项目源码 | 文件源码
def extract_image(filename,  resize_height, resize_width):
    filename1 = 'train/'+filename+'.jpeg'
    image = cv2.imread(filename1,cv2.CV_LOAD_IMAGE_GRAYSCALE)
    #image = cv2.imread(filename1)
    image = cv2.resize(image, (resize_height, resize_width))
    #b,g,r = cv2.split(image)       
    #rgb_image = cv2.merge([r,g,b])     
    cv2.imwrite(filename+'.jpeg', image)
    return image
项目:phocnet    作者:ssudholt    | 项目源码 | 文件源码
def main(img_dir, output_dir, pretrained_phocnet, deploy_proto, min_image_width_height, gpu_id):
    logging_format = '[%(asctime)-19s, %(name)s, %(levelname)s] %(message)s'
    logging.basicConfig(level=logging.INFO,
                        format=logging_format)
    logger = logging.getLogger('Predict PHOCs')

    if gpu_id is None:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(gpu_id)

    logger.info('Loading PHOCNet...')
    phocnet = caffe.Net(deploy_proto, caffe.TEST, weights=pretrained_phocnet)

    # find all images in the supplied dir
    logger.info('Found %d word images to process', len(os.listdir(img_dir)))
    word_img_list = [cv2.imread(os.path.join(img_dir, filename), cv2.CV_LOAD_IMAGE_GRAYSCALE) 
                     for filename in sorted(os.listdir(img_dir)) if filename not in ['.', '..']]
    # push images through the PHOCNet
    logger.info('Predicting PHOCs...')
    predicted_phocs = net_output_for_word_image_list(phocnet=phocnet, word_img_list=word_img_list, 
                                                    min_img_width_height=min_image_width_height)
    # save everything
    logger.info('Saving...')
    np.save(os.path.join(output_dir, 'predicted_phocs.npy'), predicted_phocs)
    logger.info('Finished')
项目:phocnet    作者:ssudholt    | 项目源码 | 文件源码
def get_word_image(self, gray_scale=True):
        col_type = None
        if gray_scale:
            col_type = cv2.CV_LOAD_IMAGE_GRAYSCALE
        else:
            col_type = cv2.CV_LOAD_IMAGE_COLOR

        # load the image
        ul = self.bounding_box['upperLeft']
        wh = self.bounding_box['widthHeight']
        img = cv2.imread(self.image_path, col_type)
        if not np.all(self.bounding_box['widthHeight'] == -1):
            img = img[ul[1]:ul[1]+wh[1], ul[0]:ul[0]+wh[0]]
        return img
项目:emote    作者:PandaWhoCodes    | 项目源码 | 文件源码
def format_image(image):
    if len(image.shape) > 2 and image.shape[2] == 3:
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
    faces = cascade_classifier.detectMultiScale(
        image,
        scaleFactor=1.3,
        minNeighbors=5
    )
    if not len(faces) > 0:
        return None
    for (x, y, w, h) in faces:
        cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
        cv2.putText(frame, str(curr_emotion), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255))
    max_area_face = faces[0]
    for face in faces:
        if face[2] * face[3] > max_area_face[2] * max_area_face[3]:
            max_area_face = face
    face = max_area_face
    image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]
    try:
        image = cv2.resize(image, (48, 48), interpolation=cv2.INTER_CUBIC) / 255.
    except Exception:
        print("[+] Problem during resize")
        return None
    return image
项目:deep-anpr    作者:matthewearl    | 项目源码 | 文件源码
def im_from_file(f):
    a = numpy.asarray(bytearray(f.read()), dtype=numpy.uint8)
    return cv2.imdecode(a, cv2.CV_LOAD_IMAGE_GRAYSCALE)
项目:deep-anpr    作者:matthewearl    | 项目源码 | 文件源码
def generate_bg(num_bg_images):
    found = False
    while not found:
        fname = "bgs/{:08d}.jpg".format(random.randint(0, num_bg_images - 1))
        bg = cv2.imread(fname, cv2.CV_LOAD_IMAGE_GRAYSCALE) / 255.
        if (bg.shape[1] >= OUTPUT_SHAPE[1] and
            bg.shape[0] >= OUTPUT_SHAPE[0]):
            found = True

    x = random.randint(0, bg.shape[1] - OUTPUT_SHAPE[1])
    y = random.randint(0, bg.shape[0] - OUTPUT_SHAPE[0])
    bg = bg[y:y + OUTPUT_SHAPE[0], x:x + OUTPUT_SHAPE[1]]

    return bg
项目:img2d3d_segmentation    作者:psodhi    | 项目源码 | 文件源码
def manuallySegmentDisparities():

    # Define Source Directories
    src_dir_anno = '../data/img/terra/405late_20161011194413_3_116_lb'
    src_dir_left = '/media/paloma/Data1/Linux_Data/TERRA/texas_field_tests/20161011/CS_405late_2016-10-11-19-44-13_PIF3_116_lb/qc_l_tr/rectified'
    src_dir_right = '/media/paloma/Data1/Linux_Data/TERRA/texas_field_tests/20161011/CS_405late_2016-10-11-19-44-13_PIF3_116_lb/qc_r_tl/rectified'

    # Read Source File Paths into alist 
    src_xmlfiles = collectFilePaths(src_dir_anno, '.xml')
    src_imgfiles = collectFilePaths(src_dir_anno, '.jpg')
    src_imgfiles_left = collectFilePaths(src_dir_left, '.jpg')
    src_imgfiles_right = collectFilePaths(src_dir_right, '.jpg')

    # Source Image Checks
    assert (len(src_xmlfiles) == len(src_imgfiles)), "number of image and annotation files should be equal"    
    assert (len(src_imgfiles_left) == len(src_imgfiles_right)), "number of left and right images should be equal"

    # Objects and Classes being called
    stemXMLParser = XMLParser('stem')
    dispComputer = DisparityComputer()
    comImgOps = CommonImageOperations()

    # Define Destination Directories
    dest_img_left = '/home/paloma/code/OpenCVReprojectImageToPointCloud/CS_405late_2016-10-11-19-44-13_PIF3_116_lb/rgb-image-'
    dest_disp = '/home/paloma/code/OpenCVReprojectImageToPointCloud/CS_405late_2016-10-11-19-44-13_PIF3_116_lb/disparity-image-'

    file_idx = 0
    for (xmlfile, imgfile, imgfile_right) in zip(src_xmlfiles, src_imgfiles, src_imgfiles_right):

        print 'File Idx : ' + str(file_idx)

        xmlroot = (ET.parse(xmlfile)).getroot()
        img = cv2.imread(imgfile)
        img_left = cv2.imread(imgfile, cv2.CV_LOAD_IMAGE_GRAYSCALE)
        img_right = cv2.imread(imgfile_right, cv2.CV_LOAD_IMAGE_GRAYSCALE)            

        mask_stem = stemXMLParser.getLabelMask(img, xmlroot)
        (disp_left, disp_left_fgnd, img_fgnd) = dispComputer.getDisparity(img_left, img_right)

        img_left = comImgOps.cropImage(img_left, numrows_crop=45, numcols_crop=35)
        disp_left = comImgOps.cropImage(disp_left, numrows_crop=45, numcols_crop=35)
        mask_stem = comImgOps.cropImage(mask_stem, numrows_crop=45, numcols_crop=35)

        cv2.imwrite(dest_img_left+str(file_idx)+'.ppm', img_left*mask_stem[:,:,1])
        cv2.imwrite(dest_disp+str(file_idx)+'.pgm', disp_left*mask_stem[:,:,1])

        file_idx = file_idx + 1