我们从Python开源项目中,提取了以下16个代码示例,用于说明如何使用cv2.drawChessboardCorners()。
def get_points(): # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((6*8,3), np.float32) objp[:,:2] = np.mgrid[0:8, 0:6].T.reshape(-1 , 2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob('calibration_wide/GO*.jpg') # Step through the list and search for chessboard corners for idx, fname in enumerate(images): img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (8,6), None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners cv2.drawChessboardCorners(img, (8,6), corners, ret) #write_name = 'corners_found'+str(idx)+'.jpg' #cv2.imwrite(write_name, img) cv2.imshow('img', img) cv2.waitKey(500) cv2.destroyAllWindows() return objpoints, imgpoints
def find_points(images): pattern_size = (9, 6) obj_points = [] img_points = [] # Assumed object points relation a_object_point = np.zeros((PATTERN_SIZE[1] * PATTERN_SIZE[0], 3), np.float32) a_object_point[:, :2] = np.mgrid[0:PATTERN_SIZE[0], 0:PATTERN_SIZE[1]].T.reshape(-1, 2) # Termination criteria for sub pixel corners refinement stop_criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001) print('Finding points ', end='') debug_images = [] for (image, color_image) in images: found, corners = cv.findChessboardCorners(image, PATTERN_SIZE, None) if found: obj_points.append(a_object_point) cv.cornerSubPix(image, corners, (11, 11), (-1, -1), stop_criteria) img_points.append(corners) print('.', end='') else: print('-', end='') if DEBUG: cv.drawChessboardCorners(color_image, PATTERN_SIZE, corners, found) debug_images.append(color_image) sys.stdout.flush() if DEBUG: display_images(debug_images, DISPLAY_SCALE) print('\nWas able to find points in %s images' % len(img_points)) return obj_points, img_points # images is a lis of tuples: (gray_image, color_image)
def rgb_callback(self,data): try: self.rgb_img = self.br.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) gray = cv2.cvtColor(self.rgb_img,cv2.COLOR_BGR2GRAY) rgb_ret, rgb_corners = cv2.findChessboardCorners(gray, (x_num,y_num),None) cv2.namedWindow('rgb_img', cv2.WINDOW_NORMAL) cv2.imshow('rgb_img',self.rgb_img) cv2.waitKey(5) if rgb_ret == True: rgb_tempimg = self.rgb_img.copy() cv2.cornerSubPix(gray,rgb_corners,(5,5),(-1,-1),criteria) cv2.drawChessboardCorners(rgb_tempimg, (x_num,y_num), rgb_corners,rgb_ret) rgb_rvec, self.rgb_tvec, rgb_inliers = cv2.solvePnPRansac(objpoints, rgb_corners, rgb_mtx, rgb_dist) self.rgb_rmat, _ = cv2.Rodrigues(rgb_rvec) print("The world coordinate system's origin in camera's coordinate system:") print("===rgb_camera rvec:") print(rgb_rvec) print("===rgb_camera rmat:") print(self.rgb_rmat) print("===rgb_camera tvec:") print(self.rgb_tvec) print("rgb_camera_shape: ") print(self.rgb_img.shape) print("The camera origin in world coordinate system:") print("===camera rmat:") print(self.rgb_rmat.T) print("===camera tvec:") print(-np.dot(self.rgb_rmat.T, self.rgb_tvec)) rgb_stream = open("/home/chentao/kinect_calibration/rgb_camera_pose.yaml", "w") data = {'rmat':self.rgb_rmat.tolist(), 'tvec':self.rgb_tvec.tolist()} yaml.dump(data, rgb_stream) cv2.imshow('rgb_img',rgb_tempimg) cv2.waitKey(5)
def corners_unwarp(img, nx, ny, mtx, dist): # Use the OpenCV undistort() function to remove distortion undist = cv2.undistort(img, mtx, dist, None, mtx) # Convert undistorted image to grayscale gray = cv2.cvtColor(undist, cv2.COLOR_BGR2GRAY) # Search for corners in the grayscaled image ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) if ret == True: # If we found corners, draw them! (just for fun) cv2.drawChessboardCorners(undist, (nx, ny), corners, ret) # Choose offset from image corners to plot detected corners # This should be chosen to present the result at the proper aspect ratio # My choice of 100 pixels is not exact, but close enough for our purpose here offset = 100 # offset for dst points # Grab the image shape img_size = (gray.shape[1], gray.shape[0]) # For source points I'm grabbing the outer four detected corners src = np.float32([corners[0], corners[nx-1], corners[-1], corners[-nx]]) # For destination points, I'm arbitrarily choosing some points to be # a nice fit for displaying our warped result # again, not exact, but close enough for our purposes dst = np.float32([[offset, offset], [img_size[0]-offset, offset], [img_size[0]-offset, img_size[1]-offset], [offset, img_size[1]-offset]]) # Given src and dst points, calculate the perspective transform matrix M = cv2.getPerspectiveTransform(src, dst) # Warp the image using OpenCV warpPerspective() warped = cv2.warpPerspective(undist, M, img_size) # Return the resulting image and matrix return warped, M
def ir_calib_callback(self,data): try: self.ir_img = self.mkgray(data) except CvBridgeError as e: print(e) ir_ret, ir_corners = cv2.findChessboardCorners(self.ir_img, (y_num,x_num)) cv2.imshow('ir_img',self.ir_img) cv2.waitKey(5) if ir_ret == True: ir_tempimg = self.ir_img.copy() cv2.cornerSubPix(ir_tempimg,ir_corners,(11,11),(-1,-1),criteria) cv2.drawChessboardCorners(ir_tempimg, (y_num,x_num), ir_corners,ir_ret) # ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP) depth_stream = open("/home/chentao/kinect_calibration/ir_camera_corners.yaml", "w") data = {'corners':ir_corners.tolist()} yaml.dump(data, depth_stream) cv2.imshow('ir_img',ir_tempimg) cv2.waitKey(5)
def corners_unwarp(img, nx, ny, undistorted): M = None warped = np.copy(img) # Use the OpenCV undistort() function to remove distortion undist = undistorted # Convert undistorted image to grayscale gray = cv2.cvtColor(undist, cv2.COLOR_BGR2GRAY) # Search for corners in the grayscaled image ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) if ret == True: # If we found corners, draw them! (just for fun) cv2.drawChessboardCorners(undist, (nx, ny), corners, ret) # Choose offset from image corners to plot detected corners # This should be chosen to present the result at the proper aspect ratio # My choice of 100 pixels is not exact, but close enough for our purpose here offset = 100 # offset for dst points # Grab the image shape img_size = (gray.shape[1], gray.shape[0]) # For source points I'm grabbing the outer four detected corners src = np.float32([corners[0], corners[nx-1], corners[-1], corners[-nx]]) # For destination points, I'm arbitrarily choosing some points to be # a nice fit for displaying our warped result # again, not exact, but close enough for our purposes dst = np.float32([[offset, offset], [img_size[0]-offset, offset], [img_size[0]-offset, img_size[1]-offset], [offset, img_size[1]-offset]]) # Given src and dst points, calculate the perspective transform matrix M = cv2.getPerspectiveTransform(src, dst) # Warp the image using OpenCV warpPerspective() warped = cv2.warpPerspective(undist, M, img_size) # Return the resulting image and matrix return warped, M
def ir_callback(self,data): try: self.ir_img = self.mkgray(data) except CvBridgeError as e: print(e) ir_ret, ir_corners = cv2.findChessboardCorners(self.ir_img, (x_num,y_num)) cv2.namedWindow('ir_img', cv2.WINDOW_NORMAL) cv2.imshow('ir_img',self.ir_img) cv2.waitKey(5) if ir_ret == True: ir_tempimg = self.ir_img.copy() cv2.cornerSubPix(ir_tempimg,ir_corners,(11,11),(-1,-1),criteria) cv2.drawChessboardCorners(ir_tempimg, (x_num,y_num), ir_corners,ir_ret) # ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP) ir_rvec, self.ir_tvec, ir_inliers = cv2.solvePnPRansac(objpoints, ir_corners, depth_mtx, depth_dist) self.ir_rmat, _ = cv2.Rodrigues(ir_rvec) print("The world coordinate system's origin in camera's coordinate system:") print("===ir_camera rvec:") print(ir_rvec) print("===ir_camera rmat:") print(self.ir_rmat) print("===ir_camera tvec:") print(self.ir_tvec) print("ir_camera_shape: ") print(self.ir_img.shape) print("The camera origin in world coordinate system:") print("===camera rmat:") print(self.ir_rmat.T) print("===camera tvec:") print(-np.dot(self.ir_rmat.T, self.ir_tvec)) depth_stream = open("/home/chentao/kinect_calibration/ir_camera_pose.yaml", "w") data = {'rmat':self.ir_rmat.tolist(), 'tvec':self.ir_tvec.tolist()} yaml.dump(data, depth_stream) cv2.imshow('ir_img',ir_tempimg) cv2.waitKey(5)
def rgb_calib_callback(self,data): try: self.rgb_img = self.br.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) gray = cv2.cvtColor(self.rgb_img,cv2.COLOR_BGR2GRAY) rgb_ret, rgb_corners = cv2.findChessboardCorners(gray, (y_num,x_num),None) cv2.imshow('rgb_img',self.rgb_img) cv2.waitKey(5) if rgb_ret == True: rgb_tempimg = self.rgb_img.copy() cv2.cornerSubPix(gray,rgb_corners,(11,11),(-1,-1),criteria) cv2.drawChessboardCorners(rgb_tempimg, (y_num,x_num), rgb_corners,rgb_ret) rgb_stream = open("/home/chentao/kinect_calibration/rgb_camera_corners.yaml", "w") data = {'corners':rgb_corners.tolist()} yaml.dump(data, rgb_stream) cv2.imshow('rgb_img',rgb_tempimg) cv2.waitKey(5)
def rgb_callback(self,data): try: img = self.br.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # ret, corners = cv2.findChessboardCorners(gray, (x_num,y_num),None) ret, corners = cv2.findChessboardCorners(img, (x_num,y_num)) cv2.imshow('img',img) cv2.waitKey(5) if ret == True: cv2.cornerSubPix(gray,corners,(5,5),(-1,-1),criteria) tempimg = img.copy() cv2.drawChessboardCorners(tempimg, (x_num,y_num), corners,ret) # ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP) rvec, tvec, inliers = cv2.solvePnPRansac(objpoints, corners, rgb_mtx, rgb_dist) print("rvecs:") print(rvec) print("tvecs:") print(tvec) # project 3D points to image plane imgpts, jac = cv2.projectPoints(axis, rvec, tvec, rgb_mtx, rgb_dist) imgpts = np.int32(imgpts).reshape(-1,2) cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[1]),[255,0,0],4) #BGR cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[2]),[0,255,0],4) cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[3]),[0,0,255],4) cv2.imshow('img',tempimg) cv2.waitKey(5)
def extract_checkerboard_and_draw_corners(self, image, chbrd_size): image = CvBridge().imgmsg_to_cv2(image, 'mono8') image_color = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) ret, corners = cv2.findChessboardCorners(image_color, chbrd_size) if not ret: cv2.putText(image_color, 'Checkerboard not found', (0, self.res_height - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255)) cv2.drawChessboardCorners(image_color, chbrd_size, corners, ret) return ret, corners, image_color
def main(): # prepare object points nx = 8#TODO: enter the number of inside corners in x ny = 6#TODO: enter the number of inside corners in y # Make a list of calibration images fname = './calibration_wide/GOPR0058.jpg' img = cv2.imread(fname) plt.imshow(img) # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) # If found, draw corners if ret == True: # Draw and display the corners cv2.drawChessboardCorners(img, (nx, ny), corners, ret) plt.imshow(img) plt.show()
def add_corners(self, i_frame, subpixel_criteria, frame_folder_path=None, save_image=False, save_chekerboard_overlay=False): grey_frame = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY) cv2.cornerSubPix(grey_frame, self.current_image_points, (11, 11), (-1, -1), subpixel_criteria) if save_image: png_path = (os.path.join(frame_folder_path, "{0:s}{1:04d}{2:s}".format(self.name, i_frame, ".png"))) cv2.imwrite(png_path, self.frame) if save_chekerboard_overlay: png_path = (os.path.join(frame_folder_path, "checkerboard_{0:s}{1:04d}{2:s}".format(self.name, i_frame, ".png"))) overlay = self.frame.copy() cv2.drawChessboardCorners(overlay, self.current_board_dims, self.current_image_points, True) cv2.imwrite(png_path, overlay) self.usable_frames[i_frame] = len(self.image_points) self.image_points.append(self.current_image_points)
def draw_chessboard_corners(image): # Find the chess board corners gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray_image, (9, 6), None) # Draw image if ret is True: criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) corners2 = cv2.cornerSubPix(gray_image, corners, (11, 11), (-1, -1), criteria) img = cv2.drawChessboardCorners(image, (9, 6), corners2, ret) return img
def drawChessboard(self, img=None): ''' draw a grid fitting to the last added image on this one or an extra image img == None ==False -> draw chessbord on empty image ==img ''' assert self.findCount > 0, 'cannot draw chessboard if nothing found' if img is None: img = self.img elif isinstance(img, bool) and not img: img = np.zeros(shape=(self.img.shape), dtype=self.img.dtype) else: img = imread(img, dtype='uint8') gray = False if img.ndim == 2: gray = True # need a color 8 bit image img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # Draw and display the corners cv2.drawChessboardCorners(img, self.opts['size'], self.opts['imgPoints'][-1], self.opts['foundPattern'][-1]) if gray: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img
def camera_cal(self, image): # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) nx = 8 ny = 6 dst = np.copy(image) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((ny * nx, 3), np.float32) objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Search for chessboard corners grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #ret_thresh, mask = cv2.threshold(grey, 30, 255, cv2.THRESH_BINARY) ret, corners = cv2.findChessboardCorners(image, (nx, ny), None) #flags=(cv2.cv.CV_CALIB_CB_ADAPTIVE_THRESH + cv2.cv.CV_CALIB_CB_FILTER_QUADS)) # If found, add object points, image points if ret == True: objpoints.append(objp) cv2.cornerSubPix(grey,corners, (11,11), (-1,-1), criteria) imgpoints.append(corners) self.calibrated = True print ("FOUND!") #Draw and display the corners cv2.drawChessboardCorners(image, (nx, ny), corners, ret) # Do camera calibration given object points and image points ret, self.mtx, self.dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, grey.shape[::-1], None, None) # Save the camera calibration result for later use (we won't worry about rvecs / tvecs) dist_pickle = {} dist_pickle["mtx"] = self.mtx dist_pickle["dist"] = self.dist dist_pickle['objpoints'] = objpoints dist_pickle['imgpoints'] = imgpoints pickle.dump( dist_pickle, open( "/home/wil/ros/catkin_ws/src/av_sim/computer_vision/camera_calibration/data/camera_cal_pickle.p", "wb" ) ) #else: #print("Searching...") return image
def calculate_camera_calibration(calib_path, rows, cols, cal_image_size): """Calculates the camera calibration based on chessboard images. Args: calib_path: calibration data (imgs) dir path rows: number of rows on chessboard cols: number of columns on chessboard Returns: a `dict` with calibration points """ objp = np.zeros((rows * cols, 3), np.float32) objp[:, :2] = np.mgrid[0:cols, 0:rows].T.reshape(-1, 2) objpoints = [] imgpoints = [] images = glob(calib_path) cal_images = np.zeros((len(images), *cal_image_size), dtype=np.uint8) successfull_cnt = 0 for idx, fname in enumerate(tqdm(images, desc='Processing image')): img = scipy.misc.imread(fname) if img.shape[0] != cal_image_size[0] or img.shape[1] != cal_image_size[1]: img = scipy.misc.imresize(img, cal_image_size) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) ret, corners = cv2.findChessboardCorners(gray, (cols, rows), None) if ret: successfull_cnt += 1 objpoints.append(objp) imgpoints.append(corners) img = cv2.drawChessboardCorners(img, (cols, rows), corners, ret) cal_images[idx] = img print("%s/%s camera calibration images processed." % (successfull_cnt, len(images))) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera( objpoints, imgpoints, cal_image_size[:-1], None, None) calibration = {'objpoints': objpoints, 'imgpoints': imgpoints, 'cal_images': cal_images, 'mtx': mtx, 'dist': dist, 'rvecs': rvecs, 'tvecs': tvecs} return calibration