我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用cv2.COLORMAP_JET。
def create_heatmaps(img, pred): """ Uses objectness probability to draw a heatmap on the image and returns it """ # find anchors with highest prediction best_pred = np.max(pred[..., 0], axis=-1) # convert probabilities to colormap scale best_pred = np.uint8(best_pred * 255) # apply color map # cv2 colormaps create BGR, not RGB cmap = cv2.cvtColor(cv2.applyColorMap(best_pred, cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB) # resize the color map to fit image cmap = cv2.resize(cmap, img.shape[1::-1], interpolation=cv2.INTER_NEAREST) # overlay cmap with image return cv2.addWeighted(cmap, 1, img, 0.5, 0)
def save(mask, img, blurred): mask = mask.cpu().data.numpy()[0] mask = np.transpose(mask, (1, 2, 0)) mask = (mask - np.min(mask)) / np.max(mask) mask = 1 - mask heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 cam = 1.0*heatmap + np.float32(img)/255 cam = cam / np.max(cam) img = np.float32(img) / 255 perturbated = np.multiply(1 - mask, img) + np.multiply(mask, blurred) cv2.imwrite("perturbated.png", np.uint8(255*perturbated)) cv2.imwrite("heatmap.png", np.uint8(255*heatmap)) cv2.imwrite("mask.png", np.uint8(255*mask)) cv2.imwrite("cam.png", np.uint8(255*cam))
def likelihood_map(prob_map,image) : '''This functon generates the likelihood map based on either obj-surr/dist model input: probability map output:likelihood map, an image(each pixel value=corresponding probability)''' global h_img,w_img,bin sf=256.0/bin image_10=image/sf image_10=image_10.astype('uint8') # creating a likelihood image acc. to obj-surr or obj-distractor model a=image_10[:,:,0] a=a.ravel() b=image_10[:,:,1] b=b.ravel() c_=image_10[:,:,2] c_=c_.ravel() prob_image=prob_map[a,b,c_] prob_image=prob_image.reshape((h_img,w_img)) prob_image1=prob_image*255 prob_image1=prob_image1.astype('uint8') likemap=cv2.applyColorMap(prob_image1, cv2.COLORMAP_JET) return likemap,prob_image1
def visualize_hypercolumns(model, original_img): img = np.float32(cv2.resize(original_img, (200, 66))) / 255.0 layers_extract = [9] hc = extract_hypercolumns(model, layers_extract, img) avg = np.product(hc, axis=0) avg = np.abs(avg) avg = avg / np.max(np.max(avg)) heatmap = cv2.applyColorMap(np.uint8(255 * avg), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / np.max(np.max(heatmap)) heatmap = cv2.resize(heatmap, original_img.shape[0:2][::-1]) both = 255 * heatmap * 0.7 + original_img both = both / np.max(both) return both
def recalculate(self): in_mark = self.g_pool.trim_marks.in_mark out_mark = self.g_pool.trim_marks.out_mark section = slice(in_mark,out_mark) # calc heatmaps for s in self.surfaces: if s.defined: s.generate_heatmap(section) # calc distirbution accross all surfaces. results = [] for s in self.surfaces: gaze_on_srf = s.gaze_on_srf_in_section(section) results.append(len(gaze_on_srf)) self.metrics_gazecount = len(gaze_on_srf) if results == []: logger.warning("No surfaces defined.") return max_res = max(results) results = np.array(results,dtype=np.float32) if not max_res: logger.warning("No gaze on any surface for this section!") else: results *= 255./max_res results = np.uint8(results) results_c_maps = cv2.applyColorMap(results, cv2.COLORMAP_JET) for s,c_map in zip(self.surfaces,results_c_maps): heatmap = np.ones((1,1,4),dtype=np.uint8)*125 heatmap[:,:,:3] = c_map s.metrics_texture = Named_Texture() s.metrics_texture.update_from_ndarray(heatmap)
def save_cam_image(img, mask, filename): heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 cam = heatmap + np.float32(img) cam = cam / np.max(cam) cv2.imwrite(filename, np.uint8(255 * cam))
def opencv_plot(des_name): densmap = np.fromfile(densmap_name, np.float32) densmap = np.reshape(densmap, (227, 227)) #densmap = norm_image(densmap) * 100 densmap *= 100.0 densmap[densmap >1 ] = 1 densmap = norm_image(densmap) * 255 densmap = densmap.astype(np.uint8) im_color = cv2.applyColorMap(densmap, cv2.COLORMAP_JET) cv2.imshow("im", im_color) cv2.waitKey(0)
def predict_image(flag): t_start = cv2.getTickCount() config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.9 config.gpu_options.allow_growth = True set_session(tf.Session(config=config)) with open(os.path.join(flag.ckpt_dir, flag.ckpt_name, 'model.json'), 'r') as json_file: loaded_model_json = json_file.read() model = model_from_json(loaded_model_json) weight_list = sorted(glob(os.path.join(flag.ckpt_dir, flag.ckpt_name, "weight*"))) model.load_weights(weight_list[-1]) print "[*] model load : %s"%weight_list[-1] t_total = (cv2.getTickCount() - t_start) / cv2.getTickFrequency() * 1000 print "[*] model loading Time: %.3f ms"%t_total imgInput = cv2.imread(flag.test_image_path, 0) input_data = imgInput.reshape((1,256,256,1)) t_start = cv2.getTickCount() result = model.predict(input_data, 1) t_total = (cv2.getTickCount() - t_start) / cv2.getTickFrequency() * 1000 print "Predict Time: %.3f ms"%t_total imgMask = (result[0]*255).astype(np.uint8) imgShow = cv2.cvtColor(imgInput, cv2.COLOR_GRAY2BGR) _, imgMask = cv2.threshold(imgMask, int(255*flag.confidence_value), 255, cv2.THRESH_BINARY) imgMaskColor = cv2.applyColorMap(imgMask, cv2.COLORMAP_JET) # imgZero = np.zeros((256,256), np.uint8) # imgMaskColor = cv2.merge((imgZero, imgMask, imgMask)) imgShow = cv2.addWeighted(imgShow, 0.9, imgMaskColor, 0.3, 0.0) output_path = os.path.join(flag.output_dir, os.path.basename(flag.test_image_path)) cv2.imwrite(output_path, imgShow) print "SAVE:[%s]"%output_path
def train_visualization_seg(self, model, epoch): image_name_list = sorted(glob(os.path.join(self.flag.data_path,'train/IMAGE/*/*.png'))) print image_name_list image_name = image_name_list[-1] image_size = self.flag.image_size imgInput = cv2.imread(image_name, self.flag.color_mode) output_path = self.flag.output_dir input_data = imgInput.reshape((1,image_size,image_size,self.flag.color_mode*2+1)) t_start = cv2.getTickCount() result = model.predict(input_data, 1) t_total = (cv2.getTickCount() - t_start) / cv2.getTickFrequency() * 1000 print "[*] Predict Time: %.3f ms"%t_total imgMask = (result[0]*255).astype(np.uint8) imgShow = cv2.cvtColor(imgInput, cv2.COLOR_GRAY2BGR) imgMaskColor = cv2.applyColorMap(imgMask, cv2.COLORMAP_JET) imgShow = cv2.addWeighted(imgShow, 0.9, imgMaskColor, 0.4, 0.0) output_path = os.path.join(self.flag.output_dir, '%04d_'%epoch+os.path.basename(image_name)) cv2.imwrite(output_path, imgShow) # print "SAVE:[%s]"%output_path # cv2.imwrite(os.path.join(output_path, 'img%04d.png'%epoch), imgShow) # cv2.namedWindow("show", 0) # cv2.resizeWindow("show", 800, 800) # cv2.imshow("show", imgShow) # cv2.waitKey(1)
def grad_cam(input_model, image, weights, feature_maps=None): #activation size of final convolition layer is 10x10" cam = np.ones((10, 10), dtype=np.float32) # Add weighted activation maps grads_val = weights for i in range(grads_val.shape[0]): # Added relu temp = (weights[i, :] * feature_maps[:, :, i]) np.maximum(temp, 0, temp) cam += temp # resize and normalization del feature_maps cam = cv2.resize(cam, (299, 299)) # Relu cam = np.maximum(cam, 0) cam = cam / np.max(cam) image = image[0, :] image -= np.min(image) image = np.minimum(image, 255) # print image.shape cam = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET) cam = 0.5*np.float32(cam) + 0.5*np.float32(image) cam = 255 * cam / np.max(cam) return np.uint8(cam)
def save(self, filename, gcam, raw_image): gcam = cv2.applyColorMap(np.uint8(gcam * 255.0), cv2.COLORMAP_JET) gcam = gcam.astype(np.float) + raw_image.astype(np.float) gcam = gcam / gcam.max() * 255.0 cv2.imwrite(filename, np.uint8(gcam))
def visualize_grad_cam(input_model, original_img, layer_name = "conv3_1"): img = np.float32(cv2.resize(original_img, (200, 66))) / 255.0 angle = input_model.predict(np.array([img])) print("The predicted angle is", 180.0 * angle[0][0] / scipy.pi, "degrees") model = Sequential() model.add(input_model) target_layer = lambda x: grad_cam_loss(x, angle) model.add(Lambda(target_layer, output_shape = grad_cam_loss_output_shape)) loss = K.sum(model.layers[-1].output) conv_output = [l for l in model.layers[0].layers if l.name is layer_name][0].output grads = normalize(K.gradients(loss, conv_output)[0]) gradient_function = K.function([model.layers[0].input], [conv_output, grads]) output, grads_val = gradient_function([[img]]) output, grads_val = output[0, :], grads_val[0, :, :, :] weights = np.mean(grads_val, axis = (0, 1)) cam = np.ones(output.shape[0 : 2], dtype = np.float32) for i, w in enumerate(weights): cam += w * output[:, :, i] #ReLU: cam = np.maximum(cam, 0) cam = cam / np.max(cam) cam = cv2.resize(cam, tuple(original_img.shape[0:2][::-1])) cam = cv2.applyColorMap(np.uint8(255*cam), cv2.COLORMAP_JET) cam = 1.0 * np.float32(cam) + np.float32(original_img) cam = cam / np.max(cam) return cam
def showImg(self,label,img): if len(img.shape) == 2: img = cv2.applyColorMap(img, cv2.COLORMAP_JET) img = cv2.resize(img, (512, 512),cv2.INTER_AREA) height, width, byteValue = img.shape byteValue = byteValue * width timg = img.copy() image = QtGui.QImage(timg.data, width, height,byteValue, QtGui.QImage.Format_RGB888) label.setPixmap(QtGui.QPixmap(image).scaled(label.size(),aspectMode=QtCore.Qt.KeepAspectRatio)) """ visualize function from https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb """
def vis_square(self, data): """Take an array of shape (n, height, width) or (n, height, width, 3) and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)""" print "Data Shape : ", data.shape # normalize data for display data = (data - data.min()) / (data.max() - data.min()) # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = (((0, n ** 2 - data.shape[0]), (0, 1), (0, 1)) # add some space between filters + ((0, 0),) * (data.ndim - 3)) # don't pad the last dimension (if there is one) data = np.pad(data, padding, mode='constant', constant_values=0) # pad with ones (white) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) # show at display #print 'Data shape : ', data.shape , len(data.shape) img = 255 * data img = cv2.resize(img, (512, 512)) img = np.array(img, dtype='uint8') img_c = cv2.applyColorMap(img, cv2.COLORMAP_JET) height, width, byteValue = img_c.shape byteValue = byteValue * width self.image = QtGui.QImage(img_c.data, width, height, byteValue, QtGui.QImage.Format_RGB888) self.ui.labelDisplay.setPixmap(QtGui.QPixmap(self.image))
def show_cam_on_image(img, mask): heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 cam = heatmap + np.float32(img) cam = cam / np.max(cam) cv2.imwrite("cam.jpg", np.uint8(255 * cam))
def grad_cam(input_model, image, category_index, layer_name): model = Sequential() model.add(input_model) nb_classes = 1000 target_layer = lambda x: target_category_loss(x, category_index, nb_classes) model.add(Lambda(target_layer, output_shape = target_category_loss_output_shape)) loss = K.sum(model.layers[-1].output) conv_output = [l for l in model.layers[0].layers if l.name is layer_name][0].output grads = normalize(K.gradients(loss, conv_output)[0]) gradient_function = K.function([model.layers[0].input], [conv_output, grads]) output, grads_val = gradient_function([image]) output, grads_val = output[0, :], grads_val[0, :, :, :] weights = np.mean(grads_val, axis = (0, 1)) cam = np.ones(output.shape[0 : 2], dtype = np.float32) for i, w in enumerate(weights): cam += w * output[:, :, i] cam = cv2.resize(cam, (224, 224)) cam = np.maximum(cam, 0) heatmap = cam / np.max(cam) #Return to BGR [0..255] from the preprocessed image image = image[0, :] image -= np.min(image) image = np.minimum(image, 255) cam = cv2.applyColorMap(np.uint8(255*heatmap), cv2.COLORMAP_JET) cam = np.float32(cam) + np.float32(image) cam = 255 * cam / np.max(cam) return np.uint8(cam), heatmap
def save_cam_image(img, mask, filename): img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) heatmap = cv2.applyColorMap(np.uint8(255.*mask), cv2.COLORMAP_JET) res = np.concatenate((img, heatmap), axis=1) cv2.imwrite(filename, res)
def generate_heatmap(self,section): if self.cache is None: logger.warning('Surface cache is not build yet.') return x,y = self.real_world_size['x'],self.real_world_size['y'] x = max(1,int(x)) y = max(1,int(y)) filter_size = int(int(self.heatmap_detail * x)/2)*2 +1 std_dev = int(filter_size /6.) self.heatmap = np.ones((y,x,4),dtype=np.uint8) all_gaze = [] for frame_idx,c_e in enumerate(self.cache[section]): if c_e: frame_idx+=section.start for gp in self.gaze_on_srf_by_frame_idx(frame_idx,c_e['m_from_screen']): if gp['confidence']>=self.g_pool.min_data_confidence: all_gaze.append(gp['norm_pos']) if not all_gaze: logger.warning("No gaze data on surface for heatmap found.") all_gaze.append((-1.,-1.)) all_gaze = np.array(all_gaze) all_gaze *= [self.real_world_size['x'],self.real_world_size['y']] hist,xedge,yedge = np.histogram2d(all_gaze[:,0], all_gaze[:,1], bins=[x,y], range=[[0, self.real_world_size['x']], [0,self.real_world_size['y']]], normed=False, weights=None) hist = np.rot90(hist) #smoothing.. hist = cv2.GaussianBlur(hist,(filter_size,filter_size),std_dev) maxval = np.amax(hist) if maxval: scale = 255./maxval else: scale = 0 hist = np.uint8( hist*(scale) ) #colormapping c_map = cv2.applyColorMap(hist, cv2.COLORMAP_JET) self.heatmap[:,:,:3] = c_map self.heatmap[:,:,3] = 125 self.heatmap_texture = Named_Texture() self.heatmap_texture.update_from_ndarray(self.heatmap)