Python cv2 模块,COLOR_RGB2YUV 实例源码

我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用cv2.COLOR_RGB2YUV

项目:robik    作者:RecunchoMaker    | 项目源码 | 文件源码
def get_color_medio(self, roi, a,b,imprimir = False):
        xl,yl,ch = roi.shape
        roiyuv = cv2.cvtColor(roi,cv2.COLOR_RGB2YUV)
        roihsv = cv2.cvtColor(roi,cv2.COLOR_RGB2HSV)
        h,s,v=cv2.split(roihsv)
        mask=(h<5)
        h[mask]=200

        roihsv = cv2.merge((h,s,v))
        std = np.std(roiyuv.reshape(xl*yl,3),axis=0)
        media = np.mean(roihsv.reshape(xl*yl,3), axis=0)-60
        mediayuv = np.mean(roiyuv.reshape(xl*yl,3), axis=0)

        if std[0]<12 and std[1]<12 and std[2]<12:
        #if (std[0]<15 and std[2]<15) or ((media[0]>100 or media[0]<25) and (std[0]>10)):
            media = np.mean(roihsv.reshape(xl*yl,3), axis=0)
            # el amarillo tiene 65 de saturacion y sobre 200
            if media[1]<60: #and (abs(media[0]-30)>10):
                # blanco
                return [-10,0,0]
            else:
                return media
        else:
            return None
项目:vehicle_detection    作者:AuzanMuh    | 项目源码 | 文件源码
def yuvPassShadowRemoval(src, shadowThreshold):
    height, width = src.shape[:2]
    imgYUV = cv2.cvtColor(src, cv2.COLOR_RGB2YUV)
    yImg, uImg, vImg = cv2.split(imgYUV)

    # for i in range(0, height):
    #   for j in range(0, width):
    #       yImg[i, j] = 0
    yImg = np.zeros((height, width, 1), np.uint8)
    imgYUV = cv2.merge([yImg, uImg, vImg])

    rgbImg = cv2.cvtColor(imgYUV, cv2.COLOR_YUV2RGB)
    rImg, gImg, bImg = cv2.split(rgbImg)

    count = width * height
    avg = np.sum(bImg)
    avg /= count * 1.0
    # for i in range(0, height):
    #    for j in range(0, width):
    #        if bImg[i, j] > ave:
    #           rImg[i, j] = 255
    #           gImg[i, j] = 255
    #           bImg[i, j] = 255
    #        else:
    #           rImg[i, j] = 0
    #           gImg[i, j] = 0
    #           bImg[i, j] = 0

    if shadowThreshold is None:
        avg = avg
    else:
        avg = shadowThreshold

    np.where(bImg > avg, 255, 0)
    _, threshold = cv2.threshold(bImg, avg, 255, cv2.THRESH_BINARY)

    output = threshold
    return output
项目:How_to_simulate_a_self_driving_car    作者:llSourcell    | 项目源码 | 文件源码
def rgb2yuv(image):
    """
    Convert the image from RGB to YUV (This is what the NVIDIA model does)
    """
    return cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
项目:car-behavioral-cloning    作者:naokishibuya    | 项目源码 | 文件源码
def rgb2yuv(image):
    """
    Convert the image from RGB to YUV (This is what the NVIDIA model does)
    """
    return cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
项目:style-transfer    作者:jimmyyhwu    | 项目源码 | 文件源码
def load_image(path):
    img = skimage.io.imread(path)
    yuv = cv2.cvtColor(np.float32(img), cv2.COLOR_RGB2YUV)
    img = img - vgg19.VGG_MEAN
    img = img[:,:,(2,1,0)]  # rgb to bgr
    return img[np.newaxis, :, :, :], yuv
项目:style-transfer    作者:jimmyyhwu    | 项目源码 | 文件源码
def save_image(img, path, content_yuv=None):
    img = np.squeeze(img)
    img = img[:,:,(2,1,0)]  # bgr to rgb
    img = img + vgg19.VGG_MEAN
    if content_yuv is not None:
        yuv = cv2.cvtColor(np.float32(img), cv2.COLOR_RGB2YUV)
        yuv[:,:,1:3] = content_yuv[:,:,1:3]
        img = cv2.cvtColor(yuv, cv2.COLOR_YUV2RGB)
    img = np.clip(img, 0, 255).astype(np.uint8)
    skimage.io.imsave(path, img)
项目:sdc-live-trainer    作者:thomasantony    | 项目源码 | 文件源码
def predict_steering(self, data):
        image_array = self.roi(cv2.cvtColor(data['image'], cv2.COLOR_RGB2YUV))
        transformed_image_array = image_array[None, :, :, :]

        return float(model.predict(transformed_image_array, batch_size=1))

    # Callback functions triggered by ControlServer
项目:sdc-live-trainer    作者:thomasantony    | 项目源码 | 文件源码
def preprocess_input(self, img):
        return self.roi(cv2.cvtColor(img, cv2.COLOR_RGB2YUV))
项目:sdc-live-trainer    作者:thomasantony    | 项目源码 | 文件源码
def preprocess_input(img):
    return roi(cv2.cvtColor(img, cv2.COLOR_RGB2YUV))
项目:behavioral    作者:gilcarmel    | 项目源码 | 文件源码
def preprocess_image(image):
    image = cv2.resize(image, (0,0), fx=fx, fy=fy)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
    # Normalize
    image = (image - 128.)/255.
    return image
项目:CarND-Traffic-Sign-Classifier-P2    作者:tomaszkacmajor    | 项目源码 | 文件源码
def convert2YUV(img):    
    return cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
项目:udacity-detecting-vehicles    作者:wonjunee    | 项目源码 | 文件源码
def extract_features(imgs, color_space='RGB', spatial_size=(32, 32),
                        hist_bins=32, orient=9, 
                        pix_per_cell=8, cell_per_block=2, hog_channel=0,
                        spatial_feat=True, hist_feat=True, hog_feat=True):
    # Create a list to append feature vectors to
    features = []
    # Iterate through the list of images
    for file in imgs:
        file_features = []
        # Read in each one by one
        image = mpimg.imread(file)
        # apply color conversion if other than 'RGB'
        if color_space != 'RGB':
            if color_space == 'HSV':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
            elif color_space == 'LUV':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV)
            elif color_space == 'HLS':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
            elif color_space == 'YUV':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
            elif color_space == 'YCrCb':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb)
        else: feature_image = np.copy(image)      

        if spatial_feat == True:
            spatial_features = bin_spatial(feature_image, size=spatial_size)
            file_features.append(spatial_features)
        if hist_feat == True:
            # Apply color_hist()
            hist_features = color_hist(feature_image, nbins=hist_bins)
            file_features.append(hist_features)
        if hog_feat == True:
        # Call get_hog_features() with vis=False, feature_vec=True
            if hog_channel == 'ALL':
                hog_features = []
                for channel in range(feature_image.shape[2]):
                    hog_features.append(get_hog_features(feature_image[:,:,channel], 
                                        orient, pix_per_cell, cell_per_block, 
                                        vis=False, feature_vec=True))
                hog_features = np.ravel(hog_features)        
            else:
                hog_features = get_hog_features(feature_image[:,:,hog_channel], orient, 
                            pix_per_cell, cell_per_block, vis=False, feature_vec=True)
            # Append the new feature vector to the features list
            file_features.append(hog_features)
        features.append(np.concatenate(file_features))
    # Return list of feature vectors
    return features

# Define a function that takes an image,
# start and stop positions in both x and y, 
# window size (x and y dimensions),  
# and overlap fraction (for both x and y)
项目:udacity-detecting-vehicles    作者:wonjunee    | 项目源码 | 文件源码
def single_img_features(img, color_space='RGB', spatial_size=(32, 32),
                        hist_bins=32, hist_range=(0, 256), orient=9, 
                        pix_per_cell=8, cell_per_block=2, hog_channel=0,
                        spatial_feat=True, hist_feat=True, hog_feat=True):    
    img_features = []
    # apply color conversion if other than 'RGB'
    if color_space != 'RGB':
        if color_space == 'HSV':
            feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
        elif color_space == 'LUV':
            feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
        elif color_space == 'HLS':
            feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
        elif color_space == 'YUV':
            feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
        elif color_space == 'YCrCb':
            feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
    else: feature_image = np.copy(img)      

    if spatial_feat == True:
        spatial_features = bin_spatial(feature_image, size=spatial_size)
        img_features.append(spatial_features)
    if hist_feat == True:
        # Apply color_hist()
        hist_features = color_hist(feature_image, nbins=hist_bins, 
                                    bins_range=hist_range)
        img_features.append(hist_features)
    if hog_feat == True:
    # Call get_hog_features() with vis=False, feature_vec=True
        if hog_channel == 'ALL':
            hog_features = []
            for channel in range(feature_image.shape[2]):
                hog_features.extend(get_hog_features(feature_image[:,:,channel], 
                                    orient, pix_per_cell, cell_per_block, 
                                    vis=False, feature_vec=True))      
        else:
            hog_features = get_hog_features(feature_image[:,:,hog_channel], orient, 
                        pix_per_cell, cell_per_block, vis=False, feature_vec=True)
        # Append the new feature vector to the features list
        img_features.append(hog_features)

    # Return list of feature vectors
    return np.concatenate(img_features)

# Convert windows to heatmap numpy array.