Python cv2 模块,isContourConvex() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用cv2.isContourConvex()

项目:PaperHelper    作者:EdgarNg1024    | 项目源码 | 文件源码
def find_squares(img):
    img = cv2.GaussianBlur(img, (5, 5), 0)
    squares = []
    for gray in cv2.split(img):
        for thrs in xrange(0, 255, 26):
            if thrs == 0:
                bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                bin = cv2.dilate(bin, None)
            else:
                retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
            bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
            for cnt in contours:
                cnt_len = cv2.arcLength(cnt, True)
                cnt = cv2.approxPolyDP(cnt, 0.02 * cnt_len, True)
                if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
                    cnt = cnt.reshape(-1, 2)
                    max_cos = np.max([angle_cos(cnt[i], cnt[(i + 1) % 4], cnt[(i + 2) % 4]) for i in xrange(4)])
                    if max_cos < 0.1:
                        squares.append(cnt)
    return squares
项目:beryl    作者:DanielJDufour    | 项目源码 | 文件源码
def find_squares(img):
    img = cv2.GaussianBlur(img, (5, 5), 0)
    squares = []
    for gray in cv2.split(img):
        for thrs in xrange(0, 255, 26):
            if thrs == 0:
                bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                bin = cv2.dilate(bin, None)
            else:
                _retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
            contours, _hierarchy = find_contours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
            for cnt in contours:
                x, y, w, h = cv2.boundingRect(cnt)
                cnt_len = cv2.arcLength(cnt, True)
                cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
                area = cv2.contourArea(cnt)
                if len(cnt) == 4 and 20 < area < 1000 and cv2.isContourConvex(cnt):
                    cnt = cnt.reshape(-1, 2)
                    max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                    if max_cos < 0.1:
                        if (1 - (float(w) / float(h)) <= 0.07 and 1 - (float(h) / float(w)) <= 0.07):
                            squares.append(cnt)
    return squares
项目:piwall-cvtools    作者:infinnovation    | 项目源码 | 文件源码
def find_squares(img, cos_limit = 0.1):
    print('search for squares with threshold %f' % cos_limit)
    img = cv2.GaussianBlur(img, (5, 5), 0)
    squares = []
    for gray in cv2.split(img):
        for thrs in xrange(0, 255, 26):
            if thrs == 0:
                bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                bin = cv2.dilate(bin, None)
            else:
                retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
            bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
            for cnt in contours:
                cnt_len = cv2.arcLength(cnt, True)
                cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
                if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
                    cnt = cnt.reshape(-1, 2)
                    max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                    if max_cos < cos_limit :
                        squares.append(cnt)
                    else:
                        #print('dropped a square with max_cos %f' % max_cos)
                        pass
    return squares

###
### Version V2.  Collect meta-data along the way,  with commentary added.
###
项目:bib-tagger    作者:KateRita    | 项目源码 | 文件源码
def get_rectangles(contours):
  rectangles = []
  for contour in contours:
    epsilon = 0.04*cv2.arcLength(contour,True)
    hull = cv2.convexHull(contour)
    approx = cv2.approxPolyDP(hull,epsilon,True)
    if (len(approx) == 4 and cv2.isContourConvex(approx)):
        rectangles.append(approx)

  return rectangles
项目:card-scanner    作者:RFVenter    | 项目源码 | 文件源码
def get_contours(image, polydb=0.1, contour_range=7):
    # find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
    contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]
    # loop over the contours
    screenCnt = None
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True) #finds the Contour Perimeter
        approx = cv2.approxPolyDP(c, polydb * peri, True)
        # if our approximated contour has four points, then we can assume that we have found our screen
        if len(approx) == 4:
            screenCnt = approx
            break
    if screenCnt is None:
        raise EdgeNotFound()
    # sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
    if not cv2.isContourConvex(screenCnt):
        screenCnt = cv2.convexHull(screenCnt)
        x,y,w,h = cv2.boundingRect(screenCnt)
        screenCnt = numpy.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])
    return screenCnt
项目:piwall-cvtools    作者:infinnovation    | 项目源码 | 文件源码
def cannyThresholding(self, contour_retrieval_mode = cv2.RETR_LIST):
        '''
        contour_retrieval_mode is passed through as second argument to cv2.findContours
        '''

        # Attempt to match edges found in blue, green or red channels : collect all
        channel = 0
        for gray in cv2.split(self.img):
            channel += 1
            print('channel %d ' % channel)
            title = self.tgen.next('channel-%d' % channel)
            if self.show: ImageViewer(gray).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
            found = {}
            for thrs in xrange(0, 255, 26):
                print('Using threshold %d' % thrs)
                if thrs == 0:
                    print('First step')
                    bin = cv2.Canny(gray, 0, 50, apertureSize=5)
                    title = self.tgen.next('canny-%d' % channel)
                    if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                    bin = cv2.dilate(bin, None)
                    title = self.tgen.next('canny-dilate-%d' % channel)
                    if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                else:
                    retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
                    title = self.tgen.next('channel-%d-threshold-%d' % (channel, thrs))
                    if self.show: ImageViewer(bin).show(window='Next threshold (n to continue)', destroy = self.destroy, info = self.info, thumbnailfn = title)
                bin, contours, hierarchy = cv2.findContours(bin, contour_retrieval_mode, cv2.CHAIN_APPROX_SIMPLE)
                title = self.tgen.next('channel-%d-threshold-%d-contours' % (channel, thrs))
                if self.show: ImageViewer(bin).show(window = title, destroy = self.destroy, info = self.info, thumbnailfn = title)
                if contour_retrieval_mode == cv2.RETR_LIST or contour_retrieval_mode == cv2.RETR_EXTERNAL:
                    filteredContours = contours
                else:
                    filteredContours = []
                    h = hierarchy[0]
                    for component in zip(contours, h):
                        currentContour = component[0]
                        currentHierarchy = component[1]
                        if currentHierarchy[3] < 0:
                            # Found the outermost parent component
                            filteredContours.append(currentContour)
                    print('Contours filtered.   Input %d  Output %d' % (len(contours), len(filteredContours)))
                    time.sleep(5)
                for cnt in filteredContours:
                    cnt_len = cv2.arcLength(cnt, True)
                    cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
                    cnt_len = len(cnt)
                    cnt_area = cv2.contourArea(cnt)
                    cnt_isConvex = cv2.isContourConvex(cnt)
                    if cnt_len == 4 and (cnt_area > self.area_min and cnt_area < self.area_max)  and cnt_isConvex:
                        cnt = cnt.reshape(-1, 2)
                        max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
                        if max_cos < self.cos_limit :
                            sq = Square(cnt, cnt_area, cnt_isConvex, max_cos)
                            self.squares.append(sq)
                        else:
                            #print('dropped a square with max_cos %f' % max_cos)
                            pass
                found[thrs] = len(self.squares)
                print('Found %d quadrilaterals with threshold %d' % (len(self.squares), thrs))
项目:card-scanner    作者:RFVenter    | 项目源码 | 文件源码
def get_contours(image, polydb=0.03, contour_range=5, show=False):
    # find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
    # if cv2version == 3: im2, contours, hierarchy = cv2.findContours(image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]

    # loop over the contours
    screenCnt = None
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True) #finds the Contour Perimeter
        approx = cv2.approxPolyDP(c, polydb * peri, True)

        # if our approximated contour has four points, then we can assume that we have found our screen
        if len(approx) == 4:
            screenCnt = approx
            break

    if screenCnt is None: raise EdgeNotFound()

    # sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
    if not cv2.isContourConvex(screenCnt):
        screenCnt = cv2.convexHull(screenCnt)
        x,y,w,h = cv2.boundingRect(screenCnt)
        screenCnt = np.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])

    if show: #this is for debugging puposes
        new_image = image.copy()
        cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
        cv2.imshow("Contour1 image", new_image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    return screenCnt
项目:card-scanner    作者:RFVenter    | 项目源码 | 文件源码
def get_contours(image, polydb=0.03, contour_range=5, show=False):
    # find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
    if cv2version == 3: im2, contours, hierarchy = cv2.findContours(image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]

    # loop over the contours
    screenCnt = None
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True) #finds the Contour Perimeter
        approx = cv2.approxPolyDP(c, polydb * peri, True)

        # if our approximated contour has four points, then we can assume that we have found our screen
        if len(approx) == 4:
            screenCnt = approx
            break

    if screenCnt is None: raise EdgeNotFound()

    # sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
    if not cv2.isContourConvex(screenCnt):
        screenCnt = cv2.convexHull(screenCnt)
        x,y,w,h = cv2.boundingRect(screenCnt)
        screenCnt = np.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])

    if show: #this is for debugging puposes
        new_image = image.copy()
        cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
        cv2.imshow("Contour1 image", new_image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    return screenCnt
项目:card-scanner    作者:RFVenter    | 项目源码 | 文件源码
def get_contours(image, polydb=0.1, contour_range=7, show=False):
    # find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
    contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]

    # loop over the contours
    screenCnt = None
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True) #finds the Contour Perimeter
        approx = cv2.approxPolyDP(c, polydb * peri, True)

        # if our approximated contour has four points, then we can assume that we have found our screen
        if len(approx) == 4:
            screenCnt = approx
            break

    if screenCnt is None:
        raise EdgeNotFound()

    # sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
    if not cv2.isContourConvex(screenCnt):
        screenCnt = cv2.convexHull(screenCnt)
        x,y,w,h = cv2.boundingRect(screenCnt)
        screenCnt = numpy.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])

    if show: #this is for debugging puposes
        new_image = image.copy()
        cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
        cv2.imshow("Contour1 image", new_image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    return screenCnt
项目:card-scanner    作者:RFVenter    | 项目源码 | 文件源码
def get_contours(image, polydb=0.03, contour_range=7, show=False):
    # find the contours in the edged image, keeping only the largest ones, and initialize the screen contour
    # if cv2version == 3: im2, contours, hierarchy = cv2.findContours(image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    contours = _findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:contour_range]

    # loop over the contours
    screenCnt = None
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True) #finds the Contour Perimeter
        approx = cv2.approxPolyDP(c, polydb * peri, True)

        # if our approximated contour has four points, then we can assume that we have found our screen
        if len(approx) == 4:
            screenCnt = approx
            break

    if screenCnt is None: raise EdgeNotFound()

    # sometimes the algorythm finds a strange non-convex shape. The shape conforms to the card but its not complete, so then just complete the shape into a convex form
    if not cv2.isContourConvex(screenCnt):
        screenCnt = cv2.convexHull(screenCnt)
        x,y,w,h = cv2.boundingRect(screenCnt)
        screenCnt = numpy.array([[[x, y]], [[x+w, y]], [[x+w, y+h]], [[x, y+h]]])

    if show: #this is for debugging puposes
        new_image = image.copy()
        cv2.drawContours(new_image, [screenCnt], -1, (255, 255, 0), 2)
        cv2.imshow("Contour1 image", new_image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    return screenCnt
项目:GTSRB-caffe-model    作者:magnusja    | 项目源码 | 文件源码
def main():
    img = cv2.imread('../images/road.png')

    # convert to gray and to binary using a threshold, to detect edges/shapes
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(gray, 127, 255, 4)

    # find shapes/contours
    contours, h = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    for contour in contours:

        perimeter = cv2.arcLength(contour, True)
        # skip shape/contour if it is too small or too big
        if perimeter < 50 or perimeter > 400 or cv2.isContourConvex(contour):
            continue

        approx = cv2.approxPolyDP(contour, 0.02 * cv2.arcLength(contour, True), True)
        x, y, w, h = cv2.boundingRect(contour)

        # colour different shapes
        if len(approx) == 3:
            cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
        elif len(approx) == 4:
            cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
        elif len(approx) >= 100:
            cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 2)
        else:
            # not an interesting shape for us
            continue

        # crop out the image, which might be a traffic sign,
        # save it to test.png
        cropped = img[y:y + h, x:x + w]
        cv2.imwrite('test.png', cropped)

        # query DIGITS REST API for classification
        response = requests.post(
            'http://localhost:5000/models/images/classification/classify_one.json?job_id=20151207-223900-80d9',
            files={'image_file': ('file.png', open('test.png', 'rb'))})

        predictions = response.json()['predictions']

        # only label shape if over 90%
        if predictions[0][1] > 90:
            print predictions[0][0]
            cv2.putText(img, predictions[0][0], (x + w + 5, y + h + 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 255)

    cv2.imshow('Demo', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()