Python cv2 模块,COLOR_BGR2YCR_CB 实例源码

我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用cv2.COLOR_BGR2YCR_CB

项目:imgpedia    作者:scferrada    | 项目源码 | 文件源码
def compute(self, img):
        averages = np.zeros((self.rows,self.cols,3))
        imgH, imgW, _ = img.shape
        for row in range(self.rows):
            for col in range(self.cols):
                slice = img[imgH/self.rows * row: imgH/self.rows * (row+1), imgW/self.cols*col : imgW/self.cols*(col+1)]
                average_color_per_row = np.mean(slice, axis=0)
                average_color = np.mean(average_color_per_row, axis=0)
                average_color = np.uint8(average_color)
                averages[row][col][0] = average_color[0]
                averages[row][col][1] = average_color[1]
                averages[row][col][2] = average_color[2]
        icon = cv2.cvtColor(np.array(averages, dtype=np.uint8), cv2.COLOR_BGR2YCR_CB)
        y, cr, cb = cv2.split(icon)
        dct_y = cv2.dct(np.float32(y))
        dct_cb = cv2.dct(np.float32(cb))
        dct_cr = cv2.dct(np.float32(cr))
        dct_y_zigzag = []
        dct_cb_zigzag = []
        dct_cr_zigzag = []
        flip = True
        flipped_dct_y = np.fliplr(dct_y)
        flipped_dct_cb = np.fliplr(dct_cb)
        flipped_dct_cr = np.fliplr(dct_cr)
        for i in range(self.rows + self.cols -1):
            k_diag = self.rows - 1 - i
            diag_y = np.diag(flipped_dct_y, k=k_diag)
            diag_cb = np.diag(flipped_dct_cb, k=k_diag)
            diag_cr = np.diag(flipped_dct_cr, k=k_diag)
            if flip:
                diag_y = diag_y[::-1]
                diag_cb = diag_cb[::-1]
                diag_cr = diag_cr[::-1]
            dct_y_zigzag.append(diag_y)
            dct_cb_zigzag.append(diag_cb)
            dct_cr_zigzag.append(diag_cr)
            flip = not flip
        return np.concatenate([np.concatenate(dct_y_zigzag), np.concatenate(dct_cb_zigzag), np.concatenate(dct_cr_zigzag)])
项目:SuperResolutionCNN    作者:galad-loth    | 项目源码 | 文件源码
def test_lapsrn():
    img=cv2.imread(("E:\\DevProj\\Datasets\\SuperResolution\\SR_testing_datasets"
                    "\\Set14\\GT\\zebra.png"),cv2.IMREAD_COLOR)
    nh,nw,nc=img.shape
#    imghr=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)    
    img_lr, img_pryd=img_preprocess(img,2)
    one_batch=LapSRNDataBatch(img_lr,img_pryd)

    net, arg_params, aux_params = mx.model.load_checkpoint("checkpoint\\lapsrn", 100)
    mod = mx.mod.Module(symbol=net, context=mx.gpu())

    provide_data=[('imglr', img_lr.shape)]
    provide_label=[]
    for s in range(2):
        provide_label.append(("loss_s{}_imggt".format(s),img_pryd[s].shape))   
    mod.bind(for_training=False, 
             data_shapes=provide_data,
             label_shapes=provide_label)
    mod.set_params(arg_params, aux_params,allow_missing=True)  


    mod.forward(one_batch)
    img_sr=mod.get_outputs()

#    img_sr=img_recover(img_sr)
    img_lr=img_recover(img_lr)
    img_hr=img_recover(img_pryd[-1])
    cv2.imwrite("results\\lapsrn_imglr.bmp",img_lr)
    cv2.imwrite("results\\lapsrn_imghr.bmp",img_hr)
    for s in range(2):
        img_temp=img_recover(img_sr[s].asnumpy())
        cv2.imwrite("results\\lapsrn_imgsr{}.bmp".format(s),img_temp)
项目:SuperResolutionCNN    作者:galad-loth    | 项目源码 | 文件源码
def next(self):
        nrow=0
        ncol=0
        crop_size=self._crop_size
        while (nrow<crop_size or ncol<crop_size) \
              and self.cur_batch < self.batch_num:                  
            img_path=os.path.join(self._datadir, self._img_list[self.cur_batch])      
            img=cv2.imread(img_path, cv2.IMREAD_COLOR)
#            img=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
            nrow,ncol=img.shape[0:2]
            self.cur_batch+=1
        if self.cur_batch < self.batch_num:
#            img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
            img_ds=cv2.resize(img,(ncol/self._scale_factor, nrow/self._scale_factor),
                              interpolation=cv2.INTER_CUBIC)  
            img_lr=cv2.resize(img_ds,(ncol, nrow),interpolation=cv2.INTER_CUBIC)  

            img=img.astype(npy.float32)
            img_lr=img_lr.astype(npy.float32)

            sub_img_lr=npy.zeros(self._provide_data[0][1],dtype=npy.float32)
            sub_img_hr=npy.zeros(self._provide_label[0][1],dtype=npy.float32)
            for i in range(self._crop_num):
                nrow_start=npy.random.randint(0,nrow-crop_size)
                ncol_start=npy.random.randint(0,ncol-crop_size)
                img_crop=img_lr[nrow_start:nrow_start+crop_size,
                                ncol_start:ncol_start+crop_size,:]              
                img_crop=(img_crop-128) /128.0           
                img_crop = npy.swapaxes(img_crop, 0, 2)
                img_crop = npy.swapaxes(img_crop, 1, 2)
                sub_img_lr[i,:,:,:]=img_crop

                img_crop=img[nrow_start:nrow_start+crop_size,
                                ncol_start:ncol_start+crop_size,:]
                img_crop=(img_crop-128) /128.0                  
                img_crop = npy.swapaxes(img_crop, 0, 2)
                img_crop = npy.swapaxes(img_crop, 1, 2)
                sub_img_hr[i,:,:,:]=img_crop
            return SRDataBatch(sub_img_lr,sub_img_hr,0)
        else:
            raise StopIteration
项目:SuperResolutionCNN    作者:galad-loth    | 项目源码 | 文件源码
def next(self):
        nrow=0
        ncol=0
        crop_size=self._crop_size
        while (nrow<crop_size or ncol<crop_size) \
              and self.cur_batch < self.batch_num:                  
            img_path=os.path.join(self._datadir, self._img_list[self.cur_batch])      
            img=cv2.imread(img_path, cv2.IMREAD_COLOR)
#            img=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
            nrow,ncol=img.shape[0:2]
            self.cur_batch+=1
        if self.cur_batch < self.batch_num:
            sub_img_lr=npy.zeros(self._provide_data[0][1],dtype=npy.float32)
            sub_img_pryd=[]
            for item in self._provide_label:
                sub_img_pryd.append(npy.zeros(item[1],dtype=npy.float32))

            for i in range(self._crop_num):
                nrow_start=npy.random.randint(0,nrow-crop_size)
                ncol_start=npy.random.randint(0,ncol-crop_size)
                img_crop=img[nrow_start:nrow_start+crop_size,
                                ncol_start:ncol_start+crop_size,:] 
                imggt_size=crop_size                
                for s in range(self._num_scales):
                    img_temp=img_crop.astype(npy.float32)
                    img_temp=(img_temp-128)/128.0
                    img_temp = npy.swapaxes(img_temp, 0, 2)
                    img_temp = npy.swapaxes(img_temp, 1, 2)
                    sub_img_pryd[self._num_scales-s-1][i,:,:,:]=img_temp
                    imggt_size=imggt_size/2
                    img_crop=cv2.resize(img_crop,(imggt_size, imggt_size),
                              interpolation=cv2.INTER_CUBIC) 
                img_temp=img_crop.astype(npy.float32)
                img_temp=(img_temp-128)/128.0
                img_temp = npy.swapaxes(img_temp, 0, 2)
                img_temp = npy.swapaxes(img_temp, 1, 2)
                sub_img_lr[i,:,:,:]=img_temp              

            return LapSRNDataBatch(sub_img_lr,sub_img_pryd,0)
        else:
            raise StopIteration
项目:eclipse2017    作者:google    | 项目源码 | 文件源码
def hisEqulColor(img):
    ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
    channels=cv2.split(ycrcb)
    # create a CLAHE object
    clahe = cv2.createCLAHE()
    channels[0] = clahe.apply(channels[0])
    cv2.merge(channels,ycrcb)
    cv2.cvtColor(ycrcb,cv2.COLOR_YCR_CB2BGR,img)