Python cv2 模块,SURF 实例源码

我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用cv2.SURF

项目:QScode    作者:PierreHao    | 项目源码 | 文件源码
def Surf(gray):
    surf = cv2.SURF()
    kps, des = surf.detectAndCompute(gray, None)
    return kps, des
项目:QScode    作者:PierreHao    | 项目源码 | 文件源码
def __init__(self, descriptor_type):
        self.rootsift = False
        lists = ['sift','rootsift','orb','surf']
        if descriptor_type is 'sift':
            self.lfe = cv2.SIFT()
        elif descriptor_type is 'surf':
            self.lfe = cv2.SURF()
        elif descriptor_type is 'rootsift':
            self.lfe = cv2.SIFT()
        elif descriptor_type is 'orb':
            self.lfe = cv2.ORB()
        else:
            assert(descriptor_type in lists)
项目:PyDatSet    作者:dnlcrl    | 项目源码 | 文件源码
def _extract_feature(X, feature):
    """Performs feature extraction
        :param X:       data (rows=images, cols=pixels)
        :param feature: which feature to extract
                        - None:   no feature is extracted
                        - "gray": grayscale features
                        - "rgb":  RGB features
                        - "hsv":  HSV features
                        - "surf": SURF features
                        - "hog":  HOG features
        :returns:       X (rows=samples, cols=features)
    """

    # transform color space
    if feature == 'gray' or feature == 'surf':
        X = [cv2.cvtColor(x, cv2.COLOR_BGR2GRAY) for x in X]
    elif feature == 'hsv':
        X = [cv2.cvtColor(x, cv2.COLOR_BGR2HSV) for x in X]

    # operate on smaller image
    small_size = (32, 32)
    X = [cv2.resize(x, small_size) for x in X]

    # extract features
    if feature == 'surf':
        surf = cv2.SURF(400)
        surf.upright = True
        surf.extended = True
        num_surf_features = 36

        # create dense grid of keypoints
        dense = cv2.FeatureDetector_create("Dense")
        kp = dense.detect(np.zeros(small_size).astype(np.uint8))

        # compute keypoints and descriptors
        kp_des = [surf.compute(x, kp) for x in X]

        # the second element is descriptor: choose first num_surf_features
        # elements
        X = [d[1][:num_surf_features, :] for d in kp_des]
    elif feature == 'hog':
        # histogram of gradients
        block_size = (small_size[0] / 2, small_size[1] / 2)
        block_stride = (small_size[0] / 4, small_size[1] / 4)
        cell_size = block_stride
        num_bins = 9
        hog = cv2.HOGDescriptor(small_size, block_size, block_stride,
                                cell_size, num_bins)
        X = [hog.compute(x) for x in X]
    elif feature is not None:
        # normalize all intensities to be between 0 and 1
        X = np.array(X).astype(np.float32) / 255

        # subtract mean
        X = [x - np.mean(x) for x in X]

    X = [x.flatten() for x in X]
    return X
项目:indices    作者:shekharshank    | 项目源码 | 文件源码
def sift(imageval):
    file_bytes = np.asarray(bytearray(imageval), dtype=np.uint8)
        img_data_ndarray = cv2.imdecode(file_bytes, cv2.CV_LOAD_IMAGE_UNCHANGED)
    gray = cv2.cvtColor(img_data_ndarray, cv2.COLOR_BGR2GRAY)
    #surf = cv2.SURF(400)
    sift = cv2.SIFT(40)
    kp, des = sift.detectAndCompute(gray,None)
    #kp, des = surf.detectAndCompute(gray,None)
    #print len(kp)
项目:indices    作者:shekharshank    | 项目源码 | 文件源码
def surf(imageval):
    file_bytes = np.asarray(bytearray(imageval), dtype=np.uint8)
        img_data_ndarray = cv2.imdecode(file_bytes, cv2.CV_LOAD_IMAGE_UNCHANGED)
    gray = cv2.cvtColor(img_data_ndarray, cv2.COLOR_BGR2GRAY)
    surf = cv2.SURF(40)
    #sift = cv2.SIFT(40)
    #kp, des = sift.detectAndCompute(gray,None)
    kp, des = surf.detectAndCompute(gray,None)
    #print len(kp)
项目:citysim3d    作者:alexlee-gk    | 项目源码 | 文件源码
def __init__(self, action_space, feature_type=None, filter_features=None,
                 max_time_steps=100, distance_threshold=4.0, **kwargs):
        """
        filter_features indicates whether to filter out key points that are not
        on the object in the current image. Key points in the target image are
        always filtered out.
        """
        SimpleQuadPanda3dEnv.__init__(self, action_space, **kwargs)
        ServoingEnv.__init__(self, env=self, max_time_steps=max_time_steps, distance_threshold=distance_threshold)

        lens = self.camera_node.node().getLens()
        self._observation_space.spaces['points'] = BoxSpace(np.array([-np.inf, lens.getNear(), -np.inf]),
                                                            np.array([np.inf, lens.getFar(), np.inf]))
        film_size = tuple(int(s) for s in lens.getFilmSize())
        self.mask_camera_sensor = Panda3dMaskCameraSensor(self.app, (self.skybox_node, self.city_node),
                                                          size=film_size,
                                                          near_far=(lens.getNear(), lens.getFar()),
                                                          hfov=lens.getFov())
        for cam in self.mask_camera_sensor.cam:
            cam.reparentTo(self.camera_sensor.cam)

        self.filter_features = True if filter_features is None else False
        self._feature_type = feature_type or 'sift'
        if cv2.__version__.split('.')[0] == '3':
            from cv2.xfeatures2d import SIFT_create, SURF_create
            from cv2 import ORB_create
            if self.feature_type == 'orb':
                # https://github.com/opencv/opencv/issues/6081
                cv2.ocl.setUseOpenCL(False)
        else:
            SIFT_create = cv2.SIFT
            SURF_create = cv2.SURF
            ORB_create = cv2.ORB
        if self.feature_type == 'sift':
            self._feature_extractor = SIFT_create()
        elif self.feature_type == 'surf':
            self._feature_extractor = SURF_create()
        elif self.feature_type == 'orb':
            self._feature_extractor = ORB_create()
        else:
            raise ValueError("Unknown feature extractor %s" % self.feature_type)
        if self.feature_type == 'orb':
            self._matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
        else:
            self._matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
        self._target_key_points = None
        self._target_descriptors = None