Python cv2 模块,ORB 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用cv2.ORB

项目:object-classification    作者:HenrYxZ    | 项目源码 | 文件源码
def test_descriptors():
    img = cv2.imread(constants.TESTING_IMG_PATH)
    cv2.imshow("Normal Image", img)
    print("Normal Image")
    option = input("Enter [1] for using ORB features and other number to use SIFT.\n")
    start = time.time()
    if option == 1:
        orb = cv2.ORB()
        kp, des = orb.detectAndCompute(img, None)
    else:
        sift = cv2.SIFT()
        kp, des = sift.detectAndCompute(img, None)
    end = time.time()
    elapsed_time = utils.humanize_time(end - start)
    des_name = constants.ORB_FEAT_NAME if option == ord(constants.ORB_FEAT_OPTION_KEY) else constants.SIFT_FEAT_NAME
    print("Elapsed time getting descriptors {0}".format(elapsed_time))
    print("Number of descriptors found {0}".format(len(des)))
    if des is not None and len(des) > 0:
        print("Dimension of descriptors {0}".format(len(des[0])))
    print("Name of descriptors used is {0}".format(des_name))
    img2 = cv2.drawKeypoints(img, kp)
    # plt.imshow(img2), plt.show()
    cv2.imshow("{0} descriptors".format(des_name), img2)
    print("Press any key to exit ...")
    cv2.waitKey()
项目:object-classification    作者:HenrYxZ    | 项目源码 | 文件源码
def test_codebook():
    dataset = pickle.load(open(constants.DATASET_OBJ_FILENAME, "rb"))
    option = input("Enter [1] for using ORB features or [2] to use SIFT features.\n")
    start = time.time()
    des = descriptors.all_descriptors(dataset, dataset.get_train_set(), option)
    end = time.time()
    elapsed_time = utils.humanize_time(end - start)
    print("Elapsed time getting all the descriptors is {0}".format(elapsed_time))
    k = 64
    des_name = constants.ORB_FEAT_NAME if option == constants.ORB_FEAT_OPTION else constants.SIFT_FEAT_NAME
    codebook_filename = "codebook_{0}_{1}.csv".format(k, des_name)
    start = time.time()
    codebook = descriptors.gen_codebook(dataset, des, k)
    end = time.time()
    elapsed_time = utils.humanize_time(end - start)
    print("Elapsed time calculating the k means for the codebook is {0}".format(elapsed_time))
    np.savetxt(codebook_filename, codebook, delimiter=constants.NUMPY_DELIMITER)
    print("Codebook loaded in {0}, press any key to exit ...".format(constants.CODEBOOK_FILE_NAME))
    cv2.waitKey()
项目:object-classification    作者:HenrYxZ    | 项目源码 | 文件源码
def orb(img):
    """
    Calculate the ORB descriptors for an image and resizes the image
    having the larger dimension set to 640 and keeping the size relation.

    Args:
        img (BGR matrix): The image that will be used.

    Returns:
        list of floats array: The descriptors found in the image.
    """
    orb = cv2.ORB()
    kp, des = orb.detectAndCompute(img, None)
    return des
项目:object-classification    作者:HenrYxZ    | 项目源码 | 文件源码
def all_descriptors(dataset, class_list, option = constants.ORB_FEAT_OPTION):
    """
    Gets every local descriptor of a set with different classes (This is useful for getting a codebook).

    Args:
        class_list (list of arrays of strings): The list has information for a specific class in each element and each
            element is an array of strings which are the paths for the image of that class.
        option (integer): It's 49 (the key '1') if ORB features are going to be used, else use SIFT features.

    Returns:
        numpy float matrix: Each row are the descriptors found in an image of the set
    """
    des = None
    for i in range(len(class_list)):
        message = "*** Getting descriptors for class number {0} of {1} ***".format(i, len(class_list))
        print(message)
        class_img_paths = class_list[i]
        new_des = descriptors_from_class(dataset, class_img_paths, i, option)
        if des is None:
            des = new_des
        else:
            des = np.vstack((des, new_des))
    message = "*****************************\n"\
              "Finished getting all the descriptors\n"
    print(message)
    print("Total number of descriptors: {0}".format(len(des)))
    if len(des) > 0:
        print("Dimension of descriptors: {0}".format(len(des[0])))
        print("First descriptor:\n{0}".format(des[0]))
    return des
项目:PKM2    作者:Szonek    | 项目源码 | 文件源码
def main():
    checkOpennCVVersion()
    img1 = cv2.imread('napis_z_tlem.png', 0)  # duzy obrazek
    img2 = cv2.imread('napis.png', 0)  # maly obrazek, tego szukamy w duzym
    orb = cv2.ORB()
    kp1, des1 = orb.detectAndCompute(img1, None)
    kp2, des2 = orb.detectAndCompute(img2, None)


    #zapis do pliku wynikowych keypointow
    imgKP1 = cv2.drawKeypoints(img1, kp1)
    cv2.imwrite('orb_keypoints_big.jpg', imgKP1)

    imgKP2 = cv2.drawKeypoints(img2, kp2)
    cv2.imwrite('orb_keypoints.jpg', imgKP2)


    matcher = cv2.BFMatcher(cv2.NORM_L2)
    matches = matcher.knnMatch(des1, trainDescriptors=des2, k=2)
    pairs = filterMatches(kp1, kp2, matches)

    l1 = len( kp1 )
    l2 = len( kp2 )
    lp = len( pairs )
    r = (lp * 100) / l1
    print r, "%"
    cv2.waitKey()
    cv2.destroyAllWindows()
    return None

#funkcja wywolowywana przed mainem. By uzyc ORB musimy byc pewni ze mamy wersje opencv 2.4
项目:QScode    作者:PierreHao    | 项目源码 | 文件源码
def Orb(img):
    orb = cv2.ORB()
    kps, des = orb.detectAndCompute(img, None)
    return kps, des
项目:QScode    作者:PierreHao    | 项目源码 | 文件源码
def __init__(self, descriptor_type):
        self.rootsift = False
        lists = ['sift','rootsift','orb','surf']
        if descriptor_type is 'sift':
            self.lfe = cv2.SIFT()
        elif descriptor_type is 'surf':
            self.lfe = cv2.SURF()
        elif descriptor_type is 'rootsift':
            self.lfe = cv2.SIFT()
        elif descriptor_type is 'orb':
            self.lfe = cv2.ORB()
        else:
            assert(descriptor_type in lists)
项目:bib-tagger    作者:KateRita    | 项目源码 | 文件源码
def findMatchesBetweenImages(image_1, image_2):
  """ Return the top 10 list of matches between two input images.

  This function detects and computes SIFT (or ORB) from the input images, and
  returns the best matches using the normalized Hamming Distance.

  Args:
    image_1 (numpy.ndarray): The first image (grayscale).
    image_2 (numpy.ndarray): The second image. (grayscale).

  Returns:
    image_1_kp (list): The image_1 keypoints, the elements are of type
                       cv2.KeyPoint.
    image_2_kp (list): The image_2 keypoints, the elements are of type
                       cv2.KeyPoint.
    matches (list): A list of matches, length 10. Each item in the list is of
                    type cv2.DMatch.

  """
  # matches - type: list of cv2.DMath
  matches = None
  # image_1_kp - type: list of cv2.KeyPoint items.
  image_1_kp = None
  # image_1_desc - type: numpy.ndarray of numpy.uint8 values.
  image_1_desc = None
  # image_2_kp - type: list of cv2.KeyPoint items.
  image_2_kp = None
  # image_2_desc - type: numpy.ndarray of numpy.uint8 values.
  image_2_desc = None

  # WRITE YOUR CODE HERE.
  #init
  sift = SIFT()

  #1. Compute SIFT keypoints and descriptors for both images
  image_1_kp, image_1_desc = sift.detectAndCompute(image_1,None)
  image_2_kp, image_2_desc = sift.detectAndCompute(image_2,None)

  #2. Create a Brute Force Matcher, using the hamming distance (and set crossCheck to true).
  #create BFMatcher object
  bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

  #3. Compute the matches between both images.
  #match descriptors
  matches = bf.match(image_1_desc,image_2_desc)

  #4. Sort the matches based on distance so you get the best matches.
  matches = sorted(matches, key=lambda x: x.distance)

  #5. Return the image_1 keypoints, image_2 keypoints, and the top 10 matches in a list.

  return image_1_kp, image_2_kp, matches[:10]
  # END OF FUNCTION.
项目:object-classification    作者:HenrYxZ    | 项目源码 | 文件源码
def descriptors_from_class(dataset, class_img_paths, class_number, option = constants.ORB_FEAT_OPTION):
    """
    Gets all the local descriptors for a class. If an image has a side with more than 640 pixels it will be resized
    leaving the biggest side at 640 pixels and conserving the aspect ratio for the other side.

    Args:
        dataset (Dataset object): An object that stores information about the dataset.
        class_img_paths (array of strings): The paths for each image in certain class.
        class_number (integer): The number of the class.
        option (integer): If this is 49 (The key '1') uses ORB features, else use SIFT.

    Returns:
        numpy float matrix: Each row are the descriptors found in an image of the class
    """
    des = None
    step = (constants.STEP_PERCENTAGE * len(class_img_paths)) / 100
    for i in range(len(class_img_paths)):
        img_path = class_img_paths[i]
        img = cv2.imread(img_path)
        resize_to = 640
        h, w, channels = img.shape
        if h > resize_to or w > resize_to:
            img = utils.resize(img, resize_to, h, w)
        if option == constants.ORB_FEAT_OPTION:
            des_name = "ORB"
            new_des = orb(img)
        else:
            des_name = "SIFT"
            new_des = sift(img)
        if new_des is not None:
            if des is None:
                des = np.array(new_des, dtype=np.float32)
            else:
                des = np.vstack((des, np.array(new_des)))
        # Print a message to show the status of the function
        if i % step == 0:
            percentage = (100 * i) / len(class_img_paths)
            message = "Calculated {0} descriptors for image {1} of {2}({3}%) of class number {4} ...".format(
                des_name, i, len(class_img_paths), percentage, class_number
            )
            print(message)
    message = "* Finished getting the descriptors for the class number {0}*".format(class_number)
    print(message)
    print("Number of descriptors in class: {0}".format(len(des)))
    dataset.set_class_count(class_number, len(des))
    return des
项目:citysim3d    作者:alexlee-gk    | 项目源码 | 文件源码
def __init__(self, action_space, feature_type=None, filter_features=None,
                 max_time_steps=100, distance_threshold=4.0, **kwargs):
        """
        filter_features indicates whether to filter out key points that are not
        on the object in the current image. Key points in the target image are
        always filtered out.
        """
        SimpleQuadPanda3dEnv.__init__(self, action_space, **kwargs)
        ServoingEnv.__init__(self, env=self, max_time_steps=max_time_steps, distance_threshold=distance_threshold)

        lens = self.camera_node.node().getLens()
        self._observation_space.spaces['points'] = BoxSpace(np.array([-np.inf, lens.getNear(), -np.inf]),
                                                            np.array([np.inf, lens.getFar(), np.inf]))
        film_size = tuple(int(s) for s in lens.getFilmSize())
        self.mask_camera_sensor = Panda3dMaskCameraSensor(self.app, (self.skybox_node, self.city_node),
                                                          size=film_size,
                                                          near_far=(lens.getNear(), lens.getFar()),
                                                          hfov=lens.getFov())
        for cam in self.mask_camera_sensor.cam:
            cam.reparentTo(self.camera_sensor.cam)

        self.filter_features = True if filter_features is None else False
        self._feature_type = feature_type or 'sift'
        if cv2.__version__.split('.')[0] == '3':
            from cv2.xfeatures2d import SIFT_create, SURF_create
            from cv2 import ORB_create
            if self.feature_type == 'orb':
                # https://github.com/opencv/opencv/issues/6081
                cv2.ocl.setUseOpenCL(False)
        else:
            SIFT_create = cv2.SIFT
            SURF_create = cv2.SURF
            ORB_create = cv2.ORB
        if self.feature_type == 'sift':
            self._feature_extractor = SIFT_create()
        elif self.feature_type == 'surf':
            self._feature_extractor = SURF_create()
        elif self.feature_type == 'orb':
            self._feature_extractor = ORB_create()
        else:
            raise ValueError("Unknown feature extractor %s" % self.feature_type)
        if self.feature_type == 'orb':
            self._matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
        else:
            self._matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
        self._target_key_points = None
        self._target_descriptors = None
项目:LearnHash    作者:galad-loth    | 项目源码 | 文件源码
def TestKptMatch():    
    img1=cv2.imread("E:\\DevProj\\Datasets\\VGGAffine\\bark\\img1.ppm",cv2.IMREAD_COLOR)
    img2=cv2.imread("E:\\DevProj\\Datasets\\VGGAffine\\bark\\img2.ppm",cv2.IMREAD_COLOR)
    gray1=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
    gray2=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
    gap_width=20
    black_gap=npy.zeros((img1.shape[0],gap_width),dtype=npy.uint8)

#    objSIFT = cv2.SIFT(500)
#    kpt1,desc1 = objSIFT.detectAndCompute(gray1,None) 
#    kpt2,desc2 = objSIFT.detectAndCompute(gray2,None) 
#    objMatcher=cv2.BFMatcher(cv2.NORM_L2)
#    matches=objMatcher.knnMatch(desc1,desc2,k=2)

    objORB = cv2.ORB(500)
    kpt1,desc1 = objORB.detectAndCompute(gray1,None) 
    kpt2,desc2 = objORB.detectAndCompute(gray2,None) 
    objMatcher=cv2.BFMatcher(cv2.NORM_HAMMING)
    matches=objMatcher.knnMatch(desc1,desc2,k=2)

    goodMatches=[]
    for bm1,bm2 in matches:
        if bm1.distance < 0.7*bm2.distance:
            goodMatches.append(bm1)

    if len(goodMatches)>10:
        ptsFrom = npy.float32([kpt1[bm.queryIdx].pt for bm in goodMatches]).reshape(-1,1,2)
        ptsTo = npy.float32([kpt2[bm.trainIdx].pt for bm in goodMatches]).reshape(-1,1,2)
        matH, matchMask = cv2.findHomography(ptsFrom, ptsTo, cv2.RANSAC,5.0)

    imgcnb=npy.concatenate((gray1,black_gap,gray2),axis=1)

    plt.figure(1,figsize=(15,6))
    plt.imshow(imgcnb,cmap="gray")
    idx=0
    for bm in goodMatches:
        if 1==matchMask[idx]:
            kptFrom=kpt1[bm.queryIdx]
            kptTo=kpt2[bm.trainIdx]
            plt.plot(kptFrom.pt[0],kptFrom.pt[1],"rs",
                     markerfacecolor="none",markeredgecolor="r",markeredgewidth=2)
            plt.plot(kptTo.pt[0]+img1.shape[1]+gap_width,kptTo.pt[1],"bo",
                     markerfacecolor="none",markeredgecolor="b",markeredgewidth=2)
            plt.plot([kptFrom.pt[0],kptTo.pt[0]+img1.shape[1]+gap_width],
                     [kptFrom.pt[1],kptTo.pt[1]],"g-",linewidth=2)
        idx+=1
    plt.axis("off")