我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用cv2.ORB。
def test_descriptors(): img = cv2.imread(constants.TESTING_IMG_PATH) cv2.imshow("Normal Image", img) print("Normal Image") option = input("Enter [1] for using ORB features and other number to use SIFT.\n") start = time.time() if option == 1: orb = cv2.ORB() kp, des = orb.detectAndCompute(img, None) else: sift = cv2.SIFT() kp, des = sift.detectAndCompute(img, None) end = time.time() elapsed_time = utils.humanize_time(end - start) des_name = constants.ORB_FEAT_NAME if option == ord(constants.ORB_FEAT_OPTION_KEY) else constants.SIFT_FEAT_NAME print("Elapsed time getting descriptors {0}".format(elapsed_time)) print("Number of descriptors found {0}".format(len(des))) if des is not None and len(des) > 0: print("Dimension of descriptors {0}".format(len(des[0]))) print("Name of descriptors used is {0}".format(des_name)) img2 = cv2.drawKeypoints(img, kp) # plt.imshow(img2), plt.show() cv2.imshow("{0} descriptors".format(des_name), img2) print("Press any key to exit ...") cv2.waitKey()
def test_codebook(): dataset = pickle.load(open(constants.DATASET_OBJ_FILENAME, "rb")) option = input("Enter [1] for using ORB features or [2] to use SIFT features.\n") start = time.time() des = descriptors.all_descriptors(dataset, dataset.get_train_set(), option) end = time.time() elapsed_time = utils.humanize_time(end - start) print("Elapsed time getting all the descriptors is {0}".format(elapsed_time)) k = 64 des_name = constants.ORB_FEAT_NAME if option == constants.ORB_FEAT_OPTION else constants.SIFT_FEAT_NAME codebook_filename = "codebook_{0}_{1}.csv".format(k, des_name) start = time.time() codebook = descriptors.gen_codebook(dataset, des, k) end = time.time() elapsed_time = utils.humanize_time(end - start) print("Elapsed time calculating the k means for the codebook is {0}".format(elapsed_time)) np.savetxt(codebook_filename, codebook, delimiter=constants.NUMPY_DELIMITER) print("Codebook loaded in {0}, press any key to exit ...".format(constants.CODEBOOK_FILE_NAME)) cv2.waitKey()
def orb(img): """ Calculate the ORB descriptors for an image and resizes the image having the larger dimension set to 640 and keeping the size relation. Args: img (BGR matrix): The image that will be used. Returns: list of floats array: The descriptors found in the image. """ orb = cv2.ORB() kp, des = orb.detectAndCompute(img, None) return des
def all_descriptors(dataset, class_list, option = constants.ORB_FEAT_OPTION): """ Gets every local descriptor of a set with different classes (This is useful for getting a codebook). Args: class_list (list of arrays of strings): The list has information for a specific class in each element and each element is an array of strings which are the paths for the image of that class. option (integer): It's 49 (the key '1') if ORB features are going to be used, else use SIFT features. Returns: numpy float matrix: Each row are the descriptors found in an image of the set """ des = None for i in range(len(class_list)): message = "*** Getting descriptors for class number {0} of {1} ***".format(i, len(class_list)) print(message) class_img_paths = class_list[i] new_des = descriptors_from_class(dataset, class_img_paths, i, option) if des is None: des = new_des else: des = np.vstack((des, new_des)) message = "*****************************\n"\ "Finished getting all the descriptors\n" print(message) print("Total number of descriptors: {0}".format(len(des))) if len(des) > 0: print("Dimension of descriptors: {0}".format(len(des[0]))) print("First descriptor:\n{0}".format(des[0])) return des
def main(): checkOpennCVVersion() img1 = cv2.imread('napis_z_tlem.png', 0) # duzy obrazek img2 = cv2.imread('napis.png', 0) # maly obrazek, tego szukamy w duzym orb = cv2.ORB() kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) #zapis do pliku wynikowych keypointow imgKP1 = cv2.drawKeypoints(img1, kp1) cv2.imwrite('orb_keypoints_big.jpg', imgKP1) imgKP2 = cv2.drawKeypoints(img2, kp2) cv2.imwrite('orb_keypoints.jpg', imgKP2) matcher = cv2.BFMatcher(cv2.NORM_L2) matches = matcher.knnMatch(des1, trainDescriptors=des2, k=2) pairs = filterMatches(kp1, kp2, matches) l1 = len( kp1 ) l2 = len( kp2 ) lp = len( pairs ) r = (lp * 100) / l1 print r, "%" cv2.waitKey() cv2.destroyAllWindows() return None #funkcja wywolowywana przed mainem. By uzyc ORB musimy byc pewni ze mamy wersje opencv 2.4
def Orb(img): orb = cv2.ORB() kps, des = orb.detectAndCompute(img, None) return kps, des
def __init__(self, descriptor_type): self.rootsift = False lists = ['sift','rootsift','orb','surf'] if descriptor_type is 'sift': self.lfe = cv2.SIFT() elif descriptor_type is 'surf': self.lfe = cv2.SURF() elif descriptor_type is 'rootsift': self.lfe = cv2.SIFT() elif descriptor_type is 'orb': self.lfe = cv2.ORB() else: assert(descriptor_type in lists)
def findMatchesBetweenImages(image_1, image_2): """ Return the top 10 list of matches between two input images. This function detects and computes SIFT (or ORB) from the input images, and returns the best matches using the normalized Hamming Distance. Args: image_1 (numpy.ndarray): The first image (grayscale). image_2 (numpy.ndarray): The second image. (grayscale). Returns: image_1_kp (list): The image_1 keypoints, the elements are of type cv2.KeyPoint. image_2_kp (list): The image_2 keypoints, the elements are of type cv2.KeyPoint. matches (list): A list of matches, length 10. Each item in the list is of type cv2.DMatch. """ # matches - type: list of cv2.DMath matches = None # image_1_kp - type: list of cv2.KeyPoint items. image_1_kp = None # image_1_desc - type: numpy.ndarray of numpy.uint8 values. image_1_desc = None # image_2_kp - type: list of cv2.KeyPoint items. image_2_kp = None # image_2_desc - type: numpy.ndarray of numpy.uint8 values. image_2_desc = None # WRITE YOUR CODE HERE. #init sift = SIFT() #1. Compute SIFT keypoints and descriptors for both images image_1_kp, image_1_desc = sift.detectAndCompute(image_1,None) image_2_kp, image_2_desc = sift.detectAndCompute(image_2,None) #2. Create a Brute Force Matcher, using the hamming distance (and set crossCheck to true). #create BFMatcher object bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) #3. Compute the matches between both images. #match descriptors matches = bf.match(image_1_desc,image_2_desc) #4. Sort the matches based on distance so you get the best matches. matches = sorted(matches, key=lambda x: x.distance) #5. Return the image_1 keypoints, image_2 keypoints, and the top 10 matches in a list. return image_1_kp, image_2_kp, matches[:10] # END OF FUNCTION.
def descriptors_from_class(dataset, class_img_paths, class_number, option = constants.ORB_FEAT_OPTION): """ Gets all the local descriptors for a class. If an image has a side with more than 640 pixels it will be resized leaving the biggest side at 640 pixels and conserving the aspect ratio for the other side. Args: dataset (Dataset object): An object that stores information about the dataset. class_img_paths (array of strings): The paths for each image in certain class. class_number (integer): The number of the class. option (integer): If this is 49 (The key '1') uses ORB features, else use SIFT. Returns: numpy float matrix: Each row are the descriptors found in an image of the class """ des = None step = (constants.STEP_PERCENTAGE * len(class_img_paths)) / 100 for i in range(len(class_img_paths)): img_path = class_img_paths[i] img = cv2.imread(img_path) resize_to = 640 h, w, channels = img.shape if h > resize_to or w > resize_to: img = utils.resize(img, resize_to, h, w) if option == constants.ORB_FEAT_OPTION: des_name = "ORB" new_des = orb(img) else: des_name = "SIFT" new_des = sift(img) if new_des is not None: if des is None: des = np.array(new_des, dtype=np.float32) else: des = np.vstack((des, np.array(new_des))) # Print a message to show the status of the function if i % step == 0: percentage = (100 * i) / len(class_img_paths) message = "Calculated {0} descriptors for image {1} of {2}({3}%) of class number {4} ...".format( des_name, i, len(class_img_paths), percentage, class_number ) print(message) message = "* Finished getting the descriptors for the class number {0}*".format(class_number) print(message) print("Number of descriptors in class: {0}".format(len(des))) dataset.set_class_count(class_number, len(des)) return des
def __init__(self, action_space, feature_type=None, filter_features=None, max_time_steps=100, distance_threshold=4.0, **kwargs): """ filter_features indicates whether to filter out key points that are not on the object in the current image. Key points in the target image are always filtered out. """ SimpleQuadPanda3dEnv.__init__(self, action_space, **kwargs) ServoingEnv.__init__(self, env=self, max_time_steps=max_time_steps, distance_threshold=distance_threshold) lens = self.camera_node.node().getLens() self._observation_space.spaces['points'] = BoxSpace(np.array([-np.inf, lens.getNear(), -np.inf]), np.array([np.inf, lens.getFar(), np.inf])) film_size = tuple(int(s) for s in lens.getFilmSize()) self.mask_camera_sensor = Panda3dMaskCameraSensor(self.app, (self.skybox_node, self.city_node), size=film_size, near_far=(lens.getNear(), lens.getFar()), hfov=lens.getFov()) for cam in self.mask_camera_sensor.cam: cam.reparentTo(self.camera_sensor.cam) self.filter_features = True if filter_features is None else False self._feature_type = feature_type or 'sift' if cv2.__version__.split('.')[0] == '3': from cv2.xfeatures2d import SIFT_create, SURF_create from cv2 import ORB_create if self.feature_type == 'orb': # https://github.com/opencv/opencv/issues/6081 cv2.ocl.setUseOpenCL(False) else: SIFT_create = cv2.SIFT SURF_create = cv2.SURF ORB_create = cv2.ORB if self.feature_type == 'sift': self._feature_extractor = SIFT_create() elif self.feature_type == 'surf': self._feature_extractor = SURF_create() elif self.feature_type == 'orb': self._feature_extractor = ORB_create() else: raise ValueError("Unknown feature extractor %s" % self.feature_type) if self.feature_type == 'orb': self._matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) else: self._matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True) self._target_key_points = None self._target_descriptors = None
def TestKptMatch(): img1=cv2.imread("E:\\DevProj\\Datasets\\VGGAffine\\bark\\img1.ppm",cv2.IMREAD_COLOR) img2=cv2.imread("E:\\DevProj\\Datasets\\VGGAffine\\bark\\img2.ppm",cv2.IMREAD_COLOR) gray1=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) gray2=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY) gap_width=20 black_gap=npy.zeros((img1.shape[0],gap_width),dtype=npy.uint8) # objSIFT = cv2.SIFT(500) # kpt1,desc1 = objSIFT.detectAndCompute(gray1,None) # kpt2,desc2 = objSIFT.detectAndCompute(gray2,None) # objMatcher=cv2.BFMatcher(cv2.NORM_L2) # matches=objMatcher.knnMatch(desc1,desc2,k=2) objORB = cv2.ORB(500) kpt1,desc1 = objORB.detectAndCompute(gray1,None) kpt2,desc2 = objORB.detectAndCompute(gray2,None) objMatcher=cv2.BFMatcher(cv2.NORM_HAMMING) matches=objMatcher.knnMatch(desc1,desc2,k=2) goodMatches=[] for bm1,bm2 in matches: if bm1.distance < 0.7*bm2.distance: goodMatches.append(bm1) if len(goodMatches)>10: ptsFrom = npy.float32([kpt1[bm.queryIdx].pt for bm in goodMatches]).reshape(-1,1,2) ptsTo = npy.float32([kpt2[bm.trainIdx].pt for bm in goodMatches]).reshape(-1,1,2) matH, matchMask = cv2.findHomography(ptsFrom, ptsTo, cv2.RANSAC,5.0) imgcnb=npy.concatenate((gray1,black_gap,gray2),axis=1) plt.figure(1,figsize=(15,6)) plt.imshow(imgcnb,cmap="gray") idx=0 for bm in goodMatches: if 1==matchMask[idx]: kptFrom=kpt1[bm.queryIdx] kptTo=kpt2[bm.trainIdx] plt.plot(kptFrom.pt[0],kptFrom.pt[1],"rs", markerfacecolor="none",markeredgecolor="r",markeredgewidth=2) plt.plot(kptTo.pt[0]+img1.shape[1]+gap_width,kptTo.pt[1],"bo", markerfacecolor="none",markeredgecolor="b",markeredgewidth=2) plt.plot([kptFrom.pt[0],kptTo.pt[0]+img1.shape[1]+gap_width], [kptFrom.pt[1],kptTo.pt[1]],"g-",linewidth=2) idx+=1 plt.axis("off")