Python cv2 模块,norm() 实例源码

我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用cv2.norm()

项目:object-classification    作者:HenrYxZ    | 项目源码 | 文件源码
def find_nn(point, neighborhood):
    """
    Finds the nearest neighborhood of a vector.

    Args:
        point (float array): The initial point.
        neighborhood (numpy float matrix): The points that are around the initial point.

    Returns:
        float array: The point that is the nearest neighbor of the initial point.
        integer: Index of the nearest neighbor inside the neighborhood list
    """
    min_dist = float('inf')
    nn = neighborhood[0]
    nn_idx = 0
    for i in range(len(neighborhood)):
        neighbor = neighborhood[i]
        dist = cv2.norm(point - neighbor)
        if dist < min_dist:
            min_dist = dist
            nn = neighbor
            nn_idx = i

    return nn, nn_idx
项目:SceneUnderstanding_CIARP_2017    作者:verlab    | 项目源码 | 文件源码
def extractFeatures(self):
        if len(self.image) == 0:
            print 'Warning: No image detected. Features not extracted.'
            return None
        else:
            self.net.blobs['data'].reshape(1, 3, self.crop, self.crop)
            self.net.blobs['data'].data[...] = self.transformer.preprocess('data', self.image)
            self.net.forward()
            features = self.net.blobs[self.layer].data.copy()


            features = np.reshape(features, (features.shape[0], -1))[0]

            if cv2.norm(features, cv2.NORM_L2) > 0:
                features = features / cv2.norm(features, cv2.NORM_L2)
            return features.tolist()
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def blur_measure(im): 
    """ See cv::videostab::calcBlurriness """

    H, W = im.shape[:2]
    gx = cv2.Sobel(im, cv2.CV_32F, 1, 0)
    gy = cv2.Sobel(im, cv2.CV_32F, 0, 1)
    norm_gx, norm_gy = cv2.norm(gx), cv2.norm(gy)
    return 1.0 / ((norm_gx ** 2 + norm_gy ** 2) / (H * W + 1e-6))
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def blur_detect(im, threshold=7):
    """
    Negative log-likelihood on the inverse gradient norm, 
    normalized by image size
    """
    nll = -np.log(blur_measure(im))
    return nll > threshold, nll
项目:idmatch    作者:maddevsio    | 项目源码 | 文件源码
def normalize_result(webcam, idcard):
    diff_correy = cv2.norm(settings.COREY_MATRIX, idcard, cv2.NORM_L2)
    diff_wilde = cv2.norm(settings.WILDE_MATRIX, idcard, cv2.NORM_L2)
    diff_min = diff_correy if diff_correy < diff_wilde else diff_wilde
    diff = cv2.norm(webcam, idcard, cv2.NORM_L2)
    score = float(diff) / float(diff_min)
    percentage = (1.28 - score * score * score) * 10000 / 128
    return {
        'percentage': percentage,
        'score': score,
        'message': utils.matching_message(score)
    }
项目:colorcs    作者:ch3njust1n    | 项目源码 | 文件源码
def compare_similarity(img1, img2, mode="opencv"):
    if mode == "opencv":
        return cv2.norm(img1, img2)
    if mode == "numpy":
        return np.linalg.norm(img1-img2)
    if mdoe == "naive_least_square":
        return np.sqrt(np.sum((img1-img2)**2))