Python cv2 模块,CV_LOAD_IMAGE_UNCHANGED 实例源码

我们从Python开源项目中,提取了以下16个代码示例,用于说明如何使用cv2.CV_LOAD_IMAGE_UNCHANGED

项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def post(self):
        global detector
        imstrjpg = self.get_argument('data', 'empty')
        if imstrjpg == 'emtpy':
            print 'EMPTY'
            return ""
        imstr = np.fromstring(imstrjpg, dtype=np.uint8)
        im = cv2.imdecode(imstr, cv2.CV_LOAD_IMAGE_UNCHANGED)
        scores, boxes = detector.detect(im)
        CONF_THRESH = 0.15
        NMS_THRESH = 0.08
        results = {}
        for cls_ind, cls in enumerate(CLASSES[1:]):
            cls_ind += 1 # because we skipped background
            cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
            cls_scores = scores[:, cls_ind]
            dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
            keep = nms(dets, NMS_THRESH)
            dets = dets[keep, :]
            results[cls] = dets

        self.write(cPickle.dumps(results))
        self.finish()
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def post(self):
        global detector
        imstrjpg = self.get_argument('data', 'empty')
        if imstrjpg == 'emtpy':
            print 'EMPTY'
            return ""
        imstr = np.fromstring(imstrjpg, dtype=np.uint8)
        im = cv2.imdecode(imstr, cv2.CV_LOAD_IMAGE_UNCHANGED)
        scores, boxes = detector.detect(im)
        CONF_THRESH = 0.15
        NMS_THRESH = 0.08
        results = {}
        for cls_ind, cls in enumerate(CLASSES[1:]):
            cls_ind += 1 # because we skipped background
            cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
            cls_scores = scores[:, cls_ind]
            dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
            keep = nms(dets, NMS_THRESH)
            dets = dets[keep, :]
            results[cls] = dets

        self.write(cPickle.dumps(results))
        self.finish()
项目:Seg    作者:gxd1994    | 项目源码 | 文件源码
def generate_detecton_label(label_root,stride,save_root):
    if not os.path.exists(save_root):
        os.makedirs(save_root)
    files = os.listdir(label_root)
    for file in files:
        label = cv2.imread(os.path.join(label_root,file),cv2.CV_LOAD_IMAGE_UNCHANGED)
        target_shape = label.shape[0]//stride,label.shape[1]//stride
        feature_label = np.zeros(target_shape,dtype = np.uint8)
        if label is None:
            print 'plese check label root path'
        h,w = label.shape
        for y in range(0,h-stride,stride):
            for x in range(0,w-stride,stride):
                patch = label[y:(y+stride),x:(x+stride)]
                num_pixels = np.sum((patch != 0))
                if num_pixels >= 1:
                    feature_label[y//stride][x//stride] = 1

        cv2.imwrite(os.path.join(save_root,file),feature_label)
项目:Seg    作者:gxd1994    | 项目源码 | 文件源码
def generate(self,img_root,label_root,save_root):
        files = os.listdir(img_root)
        for file in files:
            file_path = os.path.join(img_root,file)
            label_path = os.path.join(label_root,os.path.splitext(file)[0]+'_label'+self.lab_ext)


            img = cv2.imread(file_path)
            if img is None:
                print 'please check img file path'
                exit()
            label = cv2.imread(label_path,cv2.CV_LOAD_IMAGE_UNCHANGED)
            if label is None:
                print 'please check label file ext'
                exit()
            self._generate_patches(img,label,save_root,file)
项目:pokedex-as-it-should-be    作者:leotok    | 项目源码 | 文件源码
def predict_knn(image_file):
    image = cv2.imdecode(np.fromstring(image_file.read(), np.uint8), cv2.CV_LOAD_IMAGE_UNCHANGED)
    if image is not None:
        features = np.array([extract_color_histogram(image)])
        loaded_model = pickle.load(open(MODEL_PATH + "/knn_model.sav", 'rb'))

        return loaded_model.predict(features)[0]
    else:
        raise "Failed"
项目:pokedex-as-it-should-be    作者:leotok    | 项目源码 | 文件源码
def predict_mlp(image_file):
    image = cv2.imdecode(np.fromstring(image_file.read(), np.uint8), cv2.CV_LOAD_IMAGE_UNCHANGED)
    if image is not None:
        features = np.array([image_to_feature_vector(image)])
        loaded_model = pickle.load(open(MODEL_PATH + "/mlp_model.sav", 'rb'))
        scaler = pickle.load(open(MODEL_PATH + "/scaler_model.sav", "rb"))
        features = scaler.transform(features)

        return loaded_model.predict(features)[0]
    else:
        raise "Failed"
项目:svm-street-detector    作者:morris-frank    | 项目源码 | 文件源码
def getGroundTruth(fileNameGT):
    '''
    Returns the ground truth maps for roadArea and the validArea 
    :param fileNameGT:
    '''
    # Read GT
    assert os.path.isfile(fileNameGT), 'Cannot find: %s' % fileNameGT
    full_gt = cv2.imread(fileNameGT, cv2.CV_LOAD_IMAGE_UNCHANGED)
    #attention: OpenCV reads in as BGR, so first channel has Blue / road GT
    roadArea =  full_gt[:,:,0] > 0
    validArea = full_gt[:,:,2] > 0

    return roadArea, validArea
项目:VOCSeg    作者:lxh-123    | 项目源码 | 文件源码
def getGroundTruth(fileNameGT):
    '''
    Returns the ground truth maps for roadArea and the validArea 
    :param fileNameGT:
    '''
    # Read GT
    assert os.path.isfile(fileNameGT), 'Cannot find: %s' % fileNameGT
    full_gt = cv2.imread(fileNameGT, cv2.CV_LOAD_IMAGE_UNCHANGED)
    #attention: OpenCV reads in as BGR, so first channel has Blue / road GT
    roadArea =  full_gt[:,:,0] > 0
    validArea = full_gt[:,:,2] > 0

    return roadArea, validArea
项目:VOCSeg    作者:lxh-123    | 项目源码 | 文件源码
def getGroundTruth(fileNameGT):
    '''
    Returns the ground truth maps for roadArea and the validArea 
    :param fileNameGT:
    '''
    # Read GT
    assert os.path.isfile(fileNameGT), 'Cannot find: %s' % fileNameGT
    full_gt = cv2.imread(fileNameGT, cv2.CV_LOAD_IMAGE_UNCHANGED)
    #attention: OpenCV reads in as BGR, so first channel has Blue / road GT
    roadArea =  full_gt[:,:,0] > 0
    validArea = full_gt[:,:,2] > 0

    return roadArea, validArea
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def getGroundTruth(fileNameGT):
    '''
    Returns the ground truth maps for roadArea and the validArea 
    :param fileNameGT:
    '''
    # Read GT
    assert os.path.isfile(fileNameGT), 'Cannot find: %s' % fileNameGT
    full_gt = cv2.imread(fileNameGT, cv2.CV_LOAD_IMAGE_UNCHANGED)
    #attention: OpenCV reads in as BGR, so first channel has Blue / road GT
    roadArea =  full_gt[:,:,0] > 0
    validArea = full_gt[:,:,2] > 0

    return roadArea, validArea
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def getGroundTruth(fileNameGT):
    '''
    Returns the ground truth maps for roadArea and the validArea 
    :param fileNameGT:
    '''
    # Read GT
    assert os.path.isfile(fileNameGT), 'Cannot find: %s' % fileNameGT
    full_gt = cv2.imread(fileNameGT, cv2.CV_LOAD_IMAGE_UNCHANGED)
    #attention: OpenCV reads in as BGR, so first channel has Blue / road GT
    roadArea =  full_gt[:,:,0] > 0
    validArea = full_gt[:,:,2] > 0

    return roadArea, validArea
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def getGroundTruth(fileNameGT):
    '''
    Returns the ground truth maps for roadArea and the validArea 
    :param fileNameGT:
    '''
    # Read GT
    assert os.path.isfile(fileNameGT), 'Cannot find: %s' % fileNameGT
    full_gt = cv2.imread(fileNameGT, cv2.CV_LOAD_IMAGE_UNCHANGED)
    #attention: OpenCV reads in as BGR, so first channel has Blue / road GT
    roadArea =  full_gt[:,:,0] > 0
    validArea = full_gt[:,:,2] > 0

    return roadArea, validArea
项目:indices    作者:shekharshank    | 项目源码 | 文件源码
def sift(imageval):
    file_bytes = np.asarray(bytearray(imageval), dtype=np.uint8)
        img_data_ndarray = cv2.imdecode(file_bytes, cv2.CV_LOAD_IMAGE_UNCHANGED)
    gray = cv2.cvtColor(img_data_ndarray, cv2.COLOR_BGR2GRAY)
    #surf = cv2.SURF(400)
    sift = cv2.SIFT(40)
    kp, des = sift.detectAndCompute(gray,None)
    #kp, des = surf.detectAndCompute(gray,None)
    #print len(kp)
项目:indices    作者:shekharshank    | 项目源码 | 文件源码
def surf(imageval):
    file_bytes = np.asarray(bytearray(imageval), dtype=np.uint8)
        img_data_ndarray = cv2.imdecode(file_bytes, cv2.CV_LOAD_IMAGE_UNCHANGED)
    gray = cv2.cvtColor(img_data_ndarray, cv2.COLOR_BGR2GRAY)
    surf = cv2.SURF(40)
    #sift = cv2.SIFT(40)
    #kp, des = sift.detectAndCompute(gray,None)
    kp, des = surf.detectAndCompute(gray,None)
    #print len(kp)
项目:svm-street-detector    作者:morris-frank    | 项目源码 | 文件源码
def main(train_dir, test_dir, outputDir):
    '''
    main method of computeBaseline
    :param train_dir: directory of training data (has to contain ground truth: gt_image_2), e.g., /home/elvis/kitti_road/training
    :param test_dir: directory with testing data (has to contain images: image_2), e.g., /home/elvis/kitti_road/testing
    :param outputDir: directory where the baseline results will be saved, e.g., /home/elvis/kitti_road/test_baseline_perspective
    '''


    trainData_path_gt = os.path.join(train_dir, dataStructure.trainData_subdir_gt)

    print "Computing category specific location potential as a simple baseline for classifying the data..."
    print "Using ground truth data from: %s" % trainData_path_gt
    print "All categories = %s" %dataStructure.cats

    # Loop over all categories
    for cat in dataStructure.cats:
        cat_tags = cat.split('_')
        print "Computing on dataset: %s for class: %s" %(cat_tags[0],cat_tags[1])
        trainData_fileList_gt = glob(os.path.join(trainData_path_gt, cat + '*' + dataStructure.gt_end))
        trainData_fileList_gt.sort()
        assert len(trainData_fileList_gt)>0, 'Error: Cannot find ground truth data in %s' % trainData_path_gt

        # Compute location potential
        locationPotential = np.zeros(dataStructure.imageShape_max, 'f4')
        # Loop over all gt-files for particular category
        for trainData_fileName_gt in trainData_fileList_gt:

            full_gt = cv2.imread(trainData_fileName_gt, cv2.CV_LOAD_IMAGE_UNCHANGED)
            #attention: OpenCV reads in as BGR, so first channel has road GT
            trainData_file_gt =  full_gt[:,:,0] > 0
            #validArea = full_gt[:,:,2] > 0

            assert locationPotential.shape[0] >= trainData_file_gt.shape[0], 'Error: Y dimension of locationPotential is too small: %d' %trainData_file_gt.shape[0]
            assert locationPotential.shape[1] >= trainData_file_gt.shape[1], 'Error: X dimension of locationPotential is too small: %d' %trainData_file_gt.shape[1]

            locationPotential[:trainData_file_gt.shape[0], :trainData_file_gt.shape[1]] += trainData_file_gt

        # Compute prop
        locationPotential = locationPotential/len(trainData_fileList_gt)
        locationPotential_uinit8 = (locationPotential*255).astype('u1')

        print "Done: computing location potential for category: %s." %cat

        if not os.path.isdir(outputDir):
            os.makedirs(outputDir)

        testData_fileList_im2 = glob(os.path.join(test_dir, dataStructure.testData_subdir_im2, cat_tags[0] + '_*'+ dataStructure.im_end))
        testData_fileList_im2.sort()

        print "Writing location potential as perspective probability map into %s." %outputDir

        for testData_file_im2 in testData_fileList_im2:
            # Write output data (same format as images!)
            fileName_im2 = testData_file_im2.split('/')[-1]
            ts_str = fileName_im2.split(cat_tags[0])[-1]
            fn_out = os.path.join(outputDir, cat + ts_str)
            cv2.imwrite(fn_out, locationPotential_uinit8)

        print "Done: Creating perspective baseline."
项目:indices    作者:shekharshank    | 项目源码 | 文件源码
def detect_barcode(imageval):


    # load the image and convert it to grayscale

    file_bytes = np.asarray(bytearray(imageval), dtype=np.uint8)
        img_data_ndarray = cv2.imdecode(file_bytes, cv2.CV_LOAD_IMAGE_UNCHANGED)
    gray = cv2.cvtColor(img_data_ndarray, cv2.COLOR_BGR2GRAY)

    # compute the Scharr gradient magnitude representation of the images
    # in both the x and y direction
    gradX = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 1, dy = 0, ksize = -1)
    gradY = cv2.Sobel(gray, ddepth = cv2.cv.CV_32F, dx = 0, dy = 1, ksize = -1)

    # subtract the y-gradient from the x-gradient
    gradient = cv2.subtract(gradX, gradY)
    gradient = cv2.convertScaleAbs(gradient)

    # blur and threshold the image
    blurred = cv2.blur(gradient, (9, 9))
    (_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)

    # construct a closing kernel and apply it to the thresholded image
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
    closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

    # perform a series of erosions and dilations
    closed = cv2.erode(closed, None, iterations = 4)
    closed = cv2.dilate(closed, None, iterations = 4)

    # find the contours in the thresholded image, then sort the contours
    # by their area, keeping only the largest one
    (cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,
        cv2.CHAIN_APPROX_SIMPLE)
    c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]

    # compute the rotated bounding box of the largest contour
    rect = cv2.minAreaRect(c)
    box = np.int0(cv2.cv.BoxPoints(rect))

    # draw a bounding box arounded the detected barcode and display the
    # image
    cv2.drawContours(img_data_ndarray, [box], -1, (0, 255, 0), 3)
    # cv2.imshow("Image", image)
    #cv2.imwrite("uploads/output-"+ datetime.datetime.now().strftime("%Y-%m-%d-%H:%M:%S")  +".jpg",image)
    # cv2.waitKey(0)

    #outputfile = "uploads/output-" + time.strftime("%H:%M:%S") + ".jpg"
    outputfile = "uploads/output.jpg"

    cv2.imwrite(outputfile,img_data_ndarray)