Python cv2 模块,connectedComponentsWithStats() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用cv2.connectedComponentsWithStats()

项目:handfontgen    作者:nixeneko    | 项目源码 | 文件源码
def getmarkerboundingrect(img, mkpos, mksize):
    buffer = int(mksize * 0.15)
    x = mkpos[0] - buffer
    y = mkpos[1] - buffer
    w = mksize + buffer*2
    h = mksize + buffer*2
    roi = img[y:y+h, x:x+w]

    grayroi = getgrayimage(roi)
    ret, binimage = cv2.threshold(grayroi,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
    nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(binimage)
    # stats[0], centroids[0] are for the background label. ignore
    # cv2.CC_STAT_LEFT, cv2.CC_STAT_TOP, cv2.CC_STAT_WIDTH, cv2.CC_STAT_HEIGHT
    lblareas = stats[1:,cv2.CC_STAT_AREA]
    imax = max(enumerate(lblareas), key=(lambda x: x[1]))[0] + 1
    boundingrect = Rect(stats[imax, cv2.CC_STAT_LEFT],
                        stats[imax, cv2.CC_STAT_TOP], 
                        stats[imax, cv2.CC_STAT_WIDTH], 
                        stats[imax, cv2.CC_STAT_HEIGHT])
    return boundingrect.addoffset((x,y))
项目:handfontgen    作者:nixeneko    | 项目源码 | 文件源码
def getmarkercenter(image, pos):
    mkradius = getapproxmarkerradius(image)
    buffer = int(mkradius * 0.15)
    roisize = mkradius + buffer # half of the height or width
    x = pos[0] - roisize
    y = pos[1] - roisize
    w = 2 * roisize
    h = 2 * roisize
    roi = image[y:y+h, x:x+w]

    grayroi = getgrayimage(roi)
    ret, binimage = cv2.threshold(grayroi,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
    nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(binimage)
    # stats[0], centroids[0] are for the background label. ignore
    lblareas = stats[1:,cv2.CC_STAT_AREA]

    ave = np.average(centroids[1:], axis=0, weights=lblareas)
    return tuple(np.array([x, y]) + ave) # weighted average pos of centroids
项目:dvd    作者:ajayrfhp    | 项目源码 | 文件源码
def MoG2(vid, min_thresh=800, max_thresh=10000):
    '''
    Args    : Video object and threshold parameters
    Returns : None
    '''
    cap = cv2.VideoCapture(vid)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
    fgbg = cv2.createBackgroundSubtractorMOG2()
    connectivity = 4
    while(cap.isOpened()):
        ret, frame = cap.read()
        if not ret:
            break
        fgmask = fgbg.apply(frame)
        fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
        output = cv2.connectedComponentsWithStats(
            fgmask, connectivity, cv2.CV_32S)
        for i in range(output[0]):
            if output[2][i][4] >= min_thresh and output[2][i][4] <= max_thresh:
                cv2.rectangle(frame, (output[2][i][0], output[2][i][1]), (
                    output[2][i][0] + output[2][i][2], output[2][i][1] + output[2][i][3]), (0, 255, 0), 2)
        cv2.imshow('detection', frame)
    cap.release()
    cv2.destroyAllWindows()
项目:dream2016_dm    作者:lishen    | 项目源码 | 文件源码
def select_largest_obj(self, img_bin, lab_val=255, fill_holes=False, 
                           smooth_boundary=False, kernel_size=15):
        '''Select the largest object from a binary image and optionally
        fill holes inside it and smooth its boundary.
        Args:
            img_bin (2D array): 2D numpy array of binary image.
            lab_val ([int]): integer value used for the label of the largest 
                    object. Default is 255.
            fill_holes ([boolean]): whether fill the holes inside the largest 
                    object or not. Default is false.
            smooth_boundary ([boolean]): whether smooth the boundary of the 
                    largest object using morphological opening or not. Default 
                    is false.
            kernel_size ([int]): the size of the kernel used for morphological 
                    operation. Default is 15.
        Returns:
            a binary image as a mask for the largest object.
        '''
        n_labels, img_labeled, lab_stats, _ = \
            cv2.connectedComponentsWithStats(img_bin, connectivity=8, 
                                             ltype=cv2.CV_32S)
        largest_obj_lab = np.argmax(lab_stats[1:, 4]) + 1
        largest_mask = np.zeros(img_bin.shape, dtype=np.uint8)
        largest_mask[img_labeled == largest_obj_lab] = lab_val
        # import pdb; pdb.set_trace()
        if fill_holes:
            bkg_locs = np.where(img_labeled == 0)
            bkg_seed = (bkg_locs[0][0], bkg_locs[1][0])
            img_floodfill = largest_mask.copy()
            h_, w_ = largest_mask.shape
            mask_ = np.zeros((h_ + 2, w_ + 2), dtype=np.uint8)
            cv2.floodFill(img_floodfill, mask_, seedPoint=bkg_seed, 
                          newVal=lab_val)
            holes_mask = cv2.bitwise_not(img_floodfill)  # mask of the holes.
            largest_mask = largest_mask + holes_mask
        if smooth_boundary:
            kernel_ = np.ones((kernel_size, kernel_size), dtype=np.uint8)
            largest_mask = cv2.morphologyEx(largest_mask, cv2.MORPH_OPEN, 
                                            kernel_)

        return largest_mask
项目:qtim_ROP    作者:QTIM-Lab    | 项目源码 | 文件源码
def binary_morph(img, thresh=50, min_size=None, mask_only=True):

    if min_size is None:  # default to 10% of largest image dimension
        min_size = float(max(img.shape)) * .1

    if len(img.shape) == 3:  # flatten if RGB image
        img = np.mean(img, 2).astype(np.uint8)

    # Apply binary threshold and erode
    ret, thresh_im = cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY)

    # Connected component labelling
    n, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh_im)
    mask = np.zeros_like(labels)

    # Loop through areas in order of size
    areas = [s[4] for s in stats]
    sorted_idx = np.argsort(areas)

    for lidx, cc in zip(sorted_idx, [areas[s] for s in sorted_idx][:-1]):

        if cc > min_size:
            mask[labels == lidx] = 1

    if mask_only:
        return mask * 255
    return np.dstack([img * mask] * 3).astype(np.uint8)
项目:AMBR    作者:Algomorph    | 项目源码 | 文件源码
def extract_tracked_object(self, image, prev_cc_center):
        contour_found = False
        dist = 0.0
        tracked_px_count = 0
        tracked_object_stats = None
        largest_centroid = None

        mask = self.extract_foreground_mask(image)

        bin_mask = mask.copy()
        bin_mask[bin_mask < MaskLabel.PERSISTENCE_LABEL.value] = 0
        bin_mask[bin_mask > 0] = 1

        labels, stats, centroids = cv2.connectedComponentsWithStats(bin_mask, ltype=cv2.CV_16U)[1:4]

        if len(stats) > 1:
            # initially, just grab the biggest connected component
            ix_of_tracked_component = np.argmax(stats[1:, 4]) + 1
            largest_centroid = centroids[ix_of_tracked_component].copy()
            tracking_ok = True

            if prev_cc_center is not None:
                a = prev_cc_center
                b = largest_centroid
                dist = np.linalg.norm(a - b)
                # check to make sure we're not too far from the previously-detected blob
                if dist > 50:
                    dists = np.linalg.norm(centroids - a, axis=1)
                    ix_of_tracked_component = np.argmin(dists)
                    if dists[ix_of_tracked_component] > ConnectedComponentThreshold.TRACK_DIST_THRESH.value:
                        tracking_ok = False
                    largest_centroid = centroids[ix_of_tracked_component].copy()

            tracked_px_count = stats[ix_of_tracked_component, 4]
            tracked_object_stats = stats[ix_of_tracked_component]
            contour_found = tracked_px_count > ConnectedComponentThreshold.HIDDEN.value and tracking_ok

            if contour_found:
                bin_mask[labels != ix_of_tracked_component] = 0
                mask[bin_mask == 0] = 0
        return mask, bin_mask, contour_found, dist, tracked_px_count, tracked_object_stats, largest_centroid
项目:handfontgen    作者:nixeneko    | 项目源码 | 文件源码
def splitimage(image):
    dpmm = min(image.shape[0:2]) / DOCSIZE[0]
    sizethresh = SIZE_THRESH_MM * dpmm

    uprightimg = makeupright(image)
    grayimg = getgrayimage(uprightimg)

    # top line
    top = grayimg[0,:]
    sepx = [0,]
    ret, binimg = cv2.threshold(top,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
    nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(binimg)
    for i in range(1,nlabels):
        if stats[i,cv2.CC_STAT_AREA] >= sizethresh:
            sepx.append(centroids[i][1])

    # left line 
    left = grayimg[:,0]
    sepy = [0,]
    ret, binimg = cv2.threshold(left,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
    nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(binimg)
    for i in range(1,nlabels):
        if stats[i,cv2.CC_STAT_AREA] >= sizethresh:
            sepy.append(centroids[i][1])

    # divide into images
    imgs = []
    for iy in range(len(sepy)):
        for ix in range(len(sepx)):
            if iy == len(sepy) - 1:
                if ix == len(sepx) - 1:
                    #right-bottom corner
                    imgs.append(uprightimg[int(sepy[iy]):,int(sepx[ix]):])
                else:
                    #bottom end
                    imgs.append(uprightimg[int(sepy[iy]):,int(sepx[ix]):int(sepx[ix+1])])
            else:
                if ix == len(sepx) - 1:
                    #right end
                    imgs.append(uprightimg[int(sepy[iy]):int(sepy[iy+1]),int(sepx[ix]):])
                else:
                    #others
                    imgs.append(uprightimg[int(sepy[iy]):int(sepy[iy+1]),int(sepx[ix]):int(sepx[ix+1])])

    return imgs