我们从Python开源项目中,提取了以下2个代码示例,用于说明如何使用cv2.GC_INIT_WITH_RECT。
def remove_bkg(self, img): # quick sloppy background removal###### self.log.info("removing background") #use grabcutwith facerecthas foreground mask = np.zeros(img.shape[:2], np.uint8) bgdModel = np.zeros((1, 65), np.float64) fgdModel = np.zeros((1, 65), np.float64) mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8') cv2.grabCut(img, mask, self.rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT) img = img * mask2[:, :, np.newaxis] return img # vision context
def image_segmentation(ip_convert): img = cv2.imdecode(np.squeeze(np.asarray(ip_convert[1])), 1) # cv2.imwrite("Skin_removed.jpg",img_skin) height, width, channels = img.shape # blurred = cv2.GaussianBlur(img, (5, 5), 0) # mask = np.zeros(img.shape[:2], np.uint8) bgdModel = np.zeros((1, 65), np.float64) fgdModel = np.zeros((1, 65), np.float64) rect = (5, 5, width - 5, height - 5) cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 2, cv2.GC_INIT_WITH_RECT) mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8') img_mask = img* mask2[:, :, np.newaxis] cv2.imwrite("download(8)_grab.jpg",img_mask) # cv2.waitKey(0) # blurred = cv2.GaussianBlur(img_mask,(3,3),0) # img_skin = skin_detector.process(img_mask) # cv2.imwrite("download(10)_skin.jpg",img_skin) # cv2.waitKey(0) blurred = cv2.GaussianBlur(img_mask,(5,5),0) edgeImg = np.max( np.array([ edgedetect(blurred[:,:, 0]), edgedetect(blurred[:,:, 1]), edgedetect(blurred[:,:, 2]) ]), axis=0 ) mean = np.mean(edgeImg); # # Zero any value that is less than mean. This reduces a lot of noise. edgeImg[edgeImg < mean] = 0; edgeImg_8u = np.asarray(edgeImg, np.uint8) # # Find contours significant = findSignificantContours(img_mask, edgeImg_8u, edgeImg) cv2.imwrite("download(8)_contour.jpg",significant) significant = cv2.GaussianBlur(significant,(3,3),0) tmp = cv2.cvtColor(significant, cv2.COLOR_BGR2GRAY) _, alpha = cv2.threshold(tmp, 0, 1, cv2.THRESH_BINARY) b, g, r = cv2.split(significant) rgba = [b, g, r, alpha] dst = cv2.merge(rgba, 4) img_out = cv2.imencode('.png', dst) # cv2.imshow("Masking_Done.jpg",dst) # cv2.waitKey(0) return img_out