我们从Python开源项目中,提取了以下3个代码示例,用于说明如何使用cv2.FM_RANSAC。
def compute_fundamental(x1, x2, method=cv2.FM_RANSAC): """ Computes the fundamental matrix from corresponding points x1, x2 using the 8 point algorithm. Options: CV_FM_7POINT for a 7-point algorithm. N = 7 CV_FM_8POINT for an 8-point algorithm. N >= 8 CV_FM_RANSAC for the RANSAC algorithm. N >= 8 CV_FM_LMEDS for the LMedS algorithm. N >= 8" """ assert(x1.shape == x2.shape) if len(x1) < 8: raise RuntimeError('Fundamental matrix requires N >= 8 pts') F, mask = cv2.findFundamentalMat(x1, x2, method) return F, mask
def calculate_fundamental_matrix(self, previous_pts, current_pts): fundamental_matrix, mask = cv2.findFundamentalMat( previous_pts, current_pts, cv2.FM_RANSAC ) if fundamental_matrix is None or fundamental_matrix.shape == (1, 1): # dang, no fundamental matrix found raise Exception('No fundamental matrix found') elif fundamental_matrix.shape[0] > 3: # more than one matrix found, just pick the first fundamental_matrix = fundamental_matrix[0:3, 0:3] return np.matrix(fundamental_matrix)
def old_get_fundamental_mat_normalized(p1,p2,use_ransac=False): """ A small wrapper around cv2.getFundamentalMat, with normalization of point locations. """ mu1 = p1.mean(axis=0) std1 = p1.std(axis=0) mu2 = p2.mean(axis=0) std2 = p2.std(axis=0) p1_ = (p1 - mu1) / std1 p2_ = (p2 - mu2) / std2 if use_ransac: F_, inliers = cv2.findFundamentalMat(p1_,p2_,method=cv2.FM_RANSAC,param1=4 * 2.0/(std1+std2).mean()) else: F_,inliers = cv2.findFundamentalMat(p1_,p2_,method=cv2.FM_LMEDS) A1 = np.array([[1.0/std1[0], 0.0, -mu1[0]/std1[0]], [0, 1.0/std1[1], -mu1[1]/std1[1]], [0,0,1.0]]) A2 = np.array([[1.0/std2[0], 0.0, -mu2[0]/std2[0]], [0, 1.0/std2[1], -mu2[1]/std2[1]], [0,0,1.0]]) F = A2.T.dot(F_).dot(A1) #F = A2inv.dot(H_).dot(A1) return F,inliers # # Normalization functions #