我们从Python开源项目中,提取了以下4个代码示例,用于说明如何使用cv2.TM_CCORR。
def reconocedor(img): fil, col = img.shape[:2] #cv2.imshow('Origin', img) contador = 0 respuesta = 0 for filename in glob.glob('seniales/*.jpg'): im= cv2.imread(filename) im = cv2.resize(im, (col,fil)) res = cv2.matchTemplate(img,im,cv2.TM_CCORR) threshold = 0.9 while ((res[0])[0] > 10): (res[0])[0] = (res[0])[0] / 10; loc = (res[0])[0]/10 >= threshold contador = contador +1 if(loc): respuesta = contador #cv2.imshow(filename, im) #cv2.waitKey() # Permanece la imagen en pantalla hasta presionar una tecla #cv2.destroyAllWindows() # Cierra todas las ventanas abiertas return respuesta;
def click_image(image, notify=True): if notify: _notify("starting to click " + image) if isinstance(image, str) or isinstance(image, unicode): template = cv2.imread(image, 0) elif isinstance(image, PngImageFile): pass # need to convert to cv2 image type sleep(2) #GET SCREENSHOT call(["gnome-screenshot", "--file=/tmp/beryl.png"]) sleep(1) #FIND LOCATION OF NAME source = cv2.imread('/tmp/beryl.png', 0) points = [] w, h = template.shape[::-1] methods = [cv2.TM_CCOEFF,cv2.TM_CCOEFF_NORMED,cv2.TM_CCORR,cv2.TM_CCORR_NORMED,cv2.TM_SQDIFF,cv2.TM_SQDIFF_NORMED] for method in methods: # Apply Template Matching result = cv2.matchTemplate(source.copy(), template, method) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) #If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]: top_left = min_loc else: top_left = max_loc #bottom_right = (top_left[0] + w, top_left[1] + h) # (x,y) point = ( top_left[0] + (float(w)/2), top_left[1] + (float(h)/2) ) points.append(point) best_point = sorted([(point, avg_distance(point, points)) for point in points], key=lambda tup: tup[1])[0][0] click_location(best_point) if notify: _notify("finished clicking image")
def match_template_opencv(template, image, options): """ Match template using OpenCV template matching implementation. Limited by number of channels as maximum of 3. Suitable for direct RGB or Gray-scale matching :param options: Other options: - distance: Distance measure to use. (euclidean | correlation | ccoeff). Default: 'correlation' - normalize: Heatmap values will be in the range of 0 to 1. Default: True - retain_size: Whether to retain the same size as input image. Default: True :return: Heatmap """ # if image has more than 3 channels, use own implementation if len(image.shape) > 3: return match_template(template, image, options) op = _DEF_TM_OPT.copy() if options is not None: op.update(options) method = cv.TM_CCORR_NORMED if op['normalize'] and op['distance'] == 'euclidean': method = cv.TM_SQDIFF_NORMED elif op['distance'] == 'euclidean': method = cv.TM_SQDIFF elif op['normalize'] and op['distance'] == 'ccoeff': method = cv.TM_CCOEFF_NORMED elif op['distance'] == 'ccoeff': method = cv.TM_CCOEFF elif not op['normalize'] and op['distance'] == 'correlation': method = cv.TM_CCORR heatmap = cv.matchTemplate(image, template, method) # make minimum peak heatmap if method not in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]: heatmap = heatmap.max() - heatmap if op['normalize']: heatmap /= heatmap.max() # size if op['retain_size']: hmap = np.ones(image.shape[:2]) * heatmap.max() h, w = heatmap.shape hmap[:h, :w] = heatmap heatmap = hmap return heatmap
def find_subimage_in_array(self, sub_image, main_image, threshold=0.40, value=False, debug=False): """ http://docs.opencv.org/3.1.0/d4/dc6/tutorial_py_template_matching.html Args: sub_image: A numby matrix containing the template we are trying to match main_image: A numpy array containing the main image we are trying to find the template in value: If true: Similarity is sent back. threshold: A treshhold regarding hos sensitive the matching should be. Returns: A list containing touples: If value is true: The touples got he following elements(left,top,right,down,similarity) Where similarity is a measure toward one Else: The touples got he following elements(left,top,right,down) """ # TODO: Check the test_init_wnd test for how to implement this :) logging.debug("Doing a template match with {} as threshold".format(threshold)) methods = [cv2.TM_CCOEFF, cv2.TM_CCOEFF_NORMED, cv2.TM_CCORR, cv2.TM_CCORR_NORMED, cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED] method = methods[0] h, w = sub_image.shape[0:2] res = cv2.matchTemplate(main_image, sub_image, method) loc = np.where(res >= threshold) locations = [] for pt in zip(*loc[::-1]): if value: locations.append((pt[0], pt[1], pt[0] + w, pt[1] + h, res[pt[1], pt[0]])) else: locations.append((pt[0], pt[1], pt[0] + w, pt[1] + h)) logging.debug("Found {} locations".format(len(locations))) if debug: plt.subplot(121), plt.imshow(res, cmap='gray') plt.title('Matching Result'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(main_image, cmap='gray') plt.title('Detected Point'), plt.xticks([]), plt.yticks([]) for pt in zip(*loc[::-1]): cv2.rectangle(main_image, pt, (pt[0] + w, pt[1] + h), (255, 0, 255), 2) plt.imshow(main_image) plt.show() if value: locations.sort(reverse=True, key=operator.itemgetter(4)) return list(map(operator.itemgetter(0, 1, 2, 3), locations))