我们从Python开源项目中,提取了以下1个代码示例,用于说明如何使用data.AnnotationTransform()。
def main(): means = (104, 117, 123) # only support voc now exp_name = 'CONV-SSD-{}-{}-bs-{}-{}-lr-{:05d}'.format(args.dataset, args.input_type, args.batch_size, args.basenet[:-14], int(args.lr * 100000)) args.save_root += args.dataset+'/' args.data_root += args.dataset+'/' args.listid = '01' ## would be usefull in JHMDB-21 print('Exp name', exp_name, args.listid) for iteration in [int(itr) for itr in args.eval_iter.split(',')]: log_file = open(args.save_root + 'cache/' + exp_name + "/testing-{:d}.log".format(iteration), "w", 1) log_file.write(exp_name + '\n') trained_model_path = args.save_root + 'cache/' + exp_name + '/ssd300_ucf24_' + repr(iteration) + '.pth' log_file.write(trained_model_path+'\n') num_classes = len(CLASSES) + 1 #7 +1 background net = build_ssd(300, num_classes) # initialize SSD net.load_state_dict(torch.load(trained_model_path)) net.eval() if args.cuda: net = net.cuda() cudnn.benchmark = True print('Finished loading model %d !' % iteration) # Load dataset dataset = UCF24Detection(args.data_root, 'test', BaseTransform(args.ssd_dim, means), AnnotationTransform(), input_type=args.input_type, full_test=True) # evaluation torch.cuda.synchronize() tt0 = time.perf_counter() log_file.write('Testing net \n') mAP, ap_all, ap_strs = test_net(net, args.save_root, exp_name, args.input_type, dataset, iteration, num_classes) for ap_str in ap_strs: print(ap_str) log_file.write(ap_str + '\n') ptr_str = '\nMEANAP:::=>' + str(mAP) + '\n' print(ptr_str) log_file.write(ptr_str) torch.cuda.synchronize() print('Complete set time {:0.2f}'.format(time.perf_counter() - tt0)) log_file.close()