Python data 模块,v2() 实例源码

我们从Python开源项目中,提取了以下12个代码示例,用于说明如何使用data.v2()

项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __init__(self, phase, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = PriorBox(v2)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = 300

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax()
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
项目:realtime-action-detection    作者:gurkirt    | 项目源码 | 文件源码
def __init__(self, base, extras, head, num_classes):
        super(SSD, self).__init__()

        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = PriorBox(v2)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.num_priors = self.priors.size(0)
        self.size = 300

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        self.softmax = nn.Softmax().cuda()
        # self.detect = Detect(num_classes, 0, 200, 0.001, 0.45)
项目:ssd_pytorch    作者:miraclebiu    | 项目源码 | 文件源码
def __init__(self, phase, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = PriorBox(v2)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = 300

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax()
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
项目:yolov2    作者:zhangkaij    | 项目源码 | 文件源码
def __init__(self, phase, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = PriorBox(v2)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = 300

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax()
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __init__(self, num_classes, overlap_thresh, prior_for_matching,
                 bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
                 use_gpu=True):
        super(MultiBoxLoss, self).__init__()
        self.use_gpu = use_gpu
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap = neg_overlap
        self.variance = cfg['variance']
项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __init__(self, num_classes, bkg_label, top_k, conf_thresh, nms_thresh):
        self.num_classes = num_classes
        self.background_label = bkg_label
        self.top_k = top_k
        # Parameters used in nms.
        self.nms_thresh = nms_thresh
        if nms_thresh <= 0:
            raise ValueError('nms_threshold must be non negative.')
        self.conf_thresh = conf_thresh
        self.variance = cfg['variance']
        self.output = torch.zeros(1, self.num_classes, self.top_k, 5)
项目:realtime-action-detection    作者:gurkirt    | 项目源码 | 文件源码
def __init__(self, num_classes, overlap_thresh, prior_for_matching,
                 bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
                 use_gpu=True):
        super(MultiBoxLoss, self).__init__()
        self.use_gpu = use_gpu
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap = neg_overlap
        self.variance = cfg['variance']
项目:ssd_pytorch    作者:miraclebiu    | 项目源码 | 文件源码
def __init__(self,num_classes,overlap_thresh,prior_for_matching,bkg_label,neg_mining,neg_pos,neg_overlap,encode_target):
        super(MultiBoxLoss, self).__init__()
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching  = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap = neg_overlap
        self.variance = cfg['variance']
项目:ssd_pytorch    作者:miraclebiu    | 项目源码 | 文件源码
def __init__(self, num_classes, bkg_label, top_k, conf_thresh, nms_thresh):
        self.num_classes = num_classes
        self.background_label = bkg_label
        self.top_k = top_k
        # Parameters used in nms.
        self.nms_thresh = nms_thresh
        if nms_thresh <= 0:
            raise ValueError('nms_threshold must be non negative.')
        self.conf_thresh = conf_thresh
        self.variance = cfg['variance']
        self.output = torch.zeros(1, self.num_classes, self.top_k, 5)
项目:yolov2    作者:zhangkaij    | 项目源码 | 文件源码
def __init__(self,num_classes,overlap_thresh,prior_for_matching,bkg_label,neg_mining,neg_pos,neg_overlap,encode_target,use_gpu=True):
        super(MultiBoxLoss, self).__init__()
        self.use_gpu = use_gpu
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching  = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap = neg_overlap
        self.variance = cfg['variance']
项目:yolov2    作者:zhangkaij    | 项目源码 | 文件源码
def __init__(self, num_classes, bkg_label, top_k, conf_thresh, nms_thresh):
        self.num_classes = num_classes
        self.background_label = bkg_label
        self.top_k = top_k
        # Parameters used in nms.
        self.nms_thresh = nms_thresh
        if nms_thresh <= 0:
            raise ValueError('nms_threshold must be non negative.')
        self.conf_thresh = conf_thresh
        self.variance = cfg['variance']
        self.output = torch.zeros(1, self.num_classes+1, self.top_k, 5)
项目:ssd_pytorch    作者:miraclebiu    | 项目源码 | 文件源码
def forward(self):
        mean = []
        # TODO merge these
        if self.version == 'v2':
            for k, f in enumerate(self.feature_maps):
                for i, j in product(range(f), repeat=2):
                    f_k = self.image_size / self.steps[k]
                    # unit center x,y
                    cx = (j + 0.5) / f_k
                    cy = (i + 0.5) / f_k

                    # aspect_ratio: 1
                    # rel size: min_size
                    s_k = self.min_sizes[k]/self.image_size
                    mean += [cx, cy, s_k, s_k]

                    # aspect_ratio: 1
                    # rel size: sqrt(s_k * s_(k+1))
                    s_k_prime = sqrt(s_k * (self.max_sizes[k]/self.image_size))
                    mean += [cx, cy, s_k_prime, s_k_prime]

                    # rest of aspect ratios
                    for ar in self.aspect_ratios[k]:
                        mean += [cx, cy, s_k*sqrt(ar), s_k/sqrt(ar)]
                        mean += [cx, cy, s_k/sqrt(ar), s_k*sqrt(ar)]

        else:
            # original version generation of prior (default) boxes
            for i, k in enumerate(self.feature_maps):
                step_x = step_y = self.image_size/k
                for h, w in product(range(k), repeat=2):
                    c_x = ((w+0.5) * step_x)
                    c_y = ((h+0.5) * step_y)
                    c_w = c_h = self.min_sizes[i] / 2
                    s_k = self.image_size  # 300
                    # aspect_ratio: 1,
                    # size: min_size
                    mean += [(c_x-c_w)/s_k, (c_y-c_h)/s_k,
                             (c_x+c_w)/s_k, (c_y+c_h)/s_k]
                    if self.max_sizes[i] > 0:
                        # aspect_ratio: 1
                        # size: sqrt(min_size * max_size)/2
                        c_w = c_h = sqrt(self.min_sizes[i] *
                                         self.max_sizes[i])/2
                        mean += [(c_x-c_w)/s_k, (c_y-c_h)/s_k,
                                 (c_x+c_w)/s_k, (c_y+c_h)/s_k]
                    # rest of prior boxes
                    for ar in self.aspect_ratios[i]:
                        if not (abs(ar-1) < 1e-6):
                            c_w = self.min_sizes[i] * sqrt(ar)/2
                            c_h = self.min_sizes[i] / sqrt(ar)/2
                            mean += [(c_x-c_w)/s_k, (c_y-c_h)/s_k,
                                     (c_x+c_w)/s_k, (c_y+c_h)/s_k]
        # back to torch land
        output = torch.Tensor(mean).view(-1, 4)
        if self.clip:
            output.clamp_(max=1, min=0)
        return output