Python datasets 模块,nthu() 实例源码

我们从Python开源项目中,提取了以下30个代码示例,用于说明如何使用datasets.nthu()

项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):
        # open results file
        filename = os.path.join(output_dir, 'detections.txt')
        print 'Writing all nthu results to file ' + filename
        with open(filename, 'wt') as f:
            # for each image
            for im_ind, index in enumerate(self.image_index):
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        f.write('{:s} {:s} {:f} {:f} {:f} {:f} {:d} {:f}\n'.format(\
                                 index, cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], subcls, dets[k, 4]))
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):
        # open results file
        filename = os.path.join(output_dir, 'detections.txt')
        print 'Writing all nthu results to file ' + filename
        with open(filename, 'wt') as f:
            # for each image
            for im_ind, index in enumerate(self.image_index):
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        f.write('{:s} {:s} {:f} {:f} {:f} {:f} {:d} {:f}\n'.format(\
                                 index, cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], subcls, dets[k, 4]))
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):
        # open results file
        filename = os.path.join(output_dir, 'detections.txt')
        print 'Writing all nthu results to file ' + filename
        with open(filename, 'wt') as f:
            # for each image
            for im_ind, index in enumerate(self.image_index):
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        f.write('{:s} {:s} {:f} {:f} {:f} {:f} {:d} {:f}\n'.format(\
                                 index, cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], subcls, dets[k, 4]))
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):
        # open results file
        filename = os.path.join(output_dir, 'detections.txt')
        print 'Writing all nthu results to file ' + filename
        with open(filename, 'wt') as f:
            # for each image
            for im_ind, index in enumerate(self.image_index):
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        f.write('{:s} {:s} {:f} {:f} {:f} {:f} {:d} {:f}\n'.format(\
                                 index, cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], subcls, dets[k, 4]))
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):
        # open results file
        filename = os.path.join(output_dir, 'detections.txt')
        print 'Writing all nthu results to file ' + filename
        with open(filename, 'wt') as f:
            # for each image
            for im_ind, index in enumerate(self.image_index):
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        f.write('{:s} {:s} {:f} {:f} {:f} {:f} {:d} {:f}\n'.format(\
                                 index, cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], subcls, dets[k, 4]))
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):
        # open results file
        filename = os.path.join(output_dir, 'detections.txt')
        print 'Writing all nthu results to file ' + filename
        with open(filename, 'wt') as f:
            # for each image
            for im_ind, index in enumerate(self.image_index):
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        f.write('{:s} {:s} {:f} {:f} {:f} {:f} {:d} {:f}\n'.format(\
                                 index, cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], subcls, dets[k, 4]))
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where nthu is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'NTHU')
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):
        # load the mapping for subcalss the alpha (viewpoint)
        filename = os.path.join(self._nthu_path, 'mapping.txt')
        assert os.path.exists(filename), \
                'Path does not exist: {}'.format(filename)

        mapping = np.zeros(self._num_subclasses, dtype=np.float)
        with open(filename) as f:
            for line in f:
                words = line.split()
                subcls = int(words[0])
                mapping[subcls] = float(words[3])

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        alpha = mapping[subcls]
                        f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
                                 cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))

    # write detection results into one file
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def evaluate_proposals_msr(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                dets = all_boxes[im_ind]
                if dets == []:
                    continue
                for k in xrange(dets.shape[0]):
                    f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where nthu is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'NTHU')
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):
        # load the mapping for subcalss the alpha (viewpoint)
        filename = os.path.join(self._nthu_path, 'mapping.txt')
        assert os.path.exists(filename), \
                'Path does not exist: {}'.format(filename)

        mapping = np.zeros(self._num_subclasses, dtype=np.float)
        with open(filename) as f:
            for line in f:
                words = line.split()
                subcls = int(words[0])
                mapping[subcls] = float(words[3])

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        alpha = mapping[subcls]
                        f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
                                 cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))

    # write detection results into one file
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def evaluate_proposals_msr(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                dets = all_boxes[im_ind]
                if dets == []:
                    continue
                for k in xrange(dets.shape[0]):
                    f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where nthu is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'NTHU')
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):
        # load the mapping for subcalss the alpha (viewpoint)
        filename = os.path.join(self._nthu_path, 'mapping.txt')
        assert os.path.exists(filename), \
                'Path does not exist: {}'.format(filename)

        mapping = np.zeros(self._num_subclasses, dtype=np.float)
        with open(filename) as f:
            for line in f:
                words = line.split()
                subcls = int(words[0])
                mapping[subcls] = float(words[3])

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        alpha = mapping[subcls]
                        f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
                                 cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))

    # write detection results into one file
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def evaluate_proposals_msr(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                dets = all_boxes[im_ind]
                if dets == []:
                    continue
                for k in xrange(dets.shape[0]):
                    f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where nthu is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'NTHU')
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):
        # load the mapping for subcalss the alpha (viewpoint)
        filename = os.path.join(self._nthu_path, 'mapping.txt')
        assert os.path.exists(filename), \
                'Path does not exist: {}'.format(filename)

        mapping = np.zeros(self._num_subclasses, dtype=np.float)
        with open(filename) as f:
            for line in f:
                words = line.split()
                subcls = int(words[0])
                mapping[subcls] = float(words[3])

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        alpha = mapping[subcls]
                        f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
                                 cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))

    # write detection results into one file
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def evaluate_proposals_msr(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                dets = all_boxes[im_ind]
                if dets == []:
                    continue
                for k in xrange(dets.shape[0]):
                    f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where nthu is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'NTHU')
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):
        # load the mapping for subcalss the alpha (viewpoint)
        filename = os.path.join(self._nthu_path, 'mapping.txt')
        assert os.path.exists(filename), \
                'Path does not exist: {}'.format(filename)

        mapping = np.zeros(self._num_subclasses, dtype=np.float)
        with open(filename) as f:
            for line in f:
                words = line.split()
                subcls = int(words[0])
                mapping[subcls] = float(words[3])

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        alpha = mapping[subcls]
                        f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
                                 cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))

    # write detection results into one file
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def evaluate_proposals_msr(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                dets = all_boxes[im_ind]
                if dets == []:
                    continue
                for k in xrange(dets.shape[0]):
                    f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where nthu is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'NTHU')
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):
        # load the mapping for subcalss the alpha (viewpoint)
        filename = os.path.join(self._nthu_path, 'mapping.txt')
        assert os.path.exists(filename), \
                'Path does not exist: {}'.format(filename)

        mapping = np.zeros(self._num_subclasses, dtype=np.float)
        with open(filename) as f:
            for line in f:
                words = line.split()
                subcls = int(words[0])
                mapping[subcls] = float(words[3])

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        subcls = int(dets[k, 5])
                        cls_name = self.classes[self.subclass_mapping[subcls]]
                        assert (cls_name == cls), 'subclass not in class'
                        alpha = mapping[subcls]
                        f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\
                                 cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))

    # write detection results into one file
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def evaluate_proposals_msr(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing nthu results to file ' + filename
            with open(filename, 'wt') as f:
                dets = all_boxes[im_ind]
                if dets == []:
                    continue
                for k in xrange(dets.shape[0]):
                    f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))