Python dill 模块,load() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用dill.load()

项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def load(path, num_cpu=16):
    """Load act function that was returned by learn function.

    Parameters
    ----------
    path: str
        path to the act function pickle
    num_cpu: int
        number of cpus to use for executing the policy

    Returns
    -------
    act: ActWrapper
        function that takes a batch of observations
        and returns actions.
    """
    return ActWrapper.load(path, num_cpu=num_cpu)
项目:kaggle    作者:RankingAI    | 项目源码 | 文件源码
def __LaunchTask(self, task, PredCols):
        """"""
        print('\n---- Begin to deal with %s' % (task))
        start = time.time()

        if(task == 'MissingValue'):
            self.TrainData, self.TestData = self._missing.impute((self.TrainData, self.TestData))
        elif(task == 'NewFeature'):
            self.TrainData, self.TestData = self._newfeat.create((self.TrainData, self.TestData), PredCols)
        elif(task == 'FeatureEncoding'):
            with open('%s/featmap.pkl' % self._InputDir, 'rb') as i_file:
                d_feat = pickle.load(i_file)
            i_file.close()
            self.TrainData, self.TestData = self._encoding.ordinal((self.TrainData, self.TestData), d_feat)
        elif(task == 'FeatureSelection'):
            self.TrainData, self.TestData = self._select.select((self.TrainData, self.TestData))

        end = time.time()
        print('---- Task %s done, time consumed %ds' % (task, (end - start)))
项目:combine-DT-with-NN-in-RL    作者:Burning-Bear    | 项目源码 | 文件源码
def load(path, num_cpu=16):
    """Load act function that was returned by learn function.

    Parameters
    ----------
    path: str
        path to the act function pickle
    num_cpu: int
        number of cpus to use for executing the policy

    Returns
    -------
    act: ActWrapper
        function that takes a batch of observations
        and returns actions.
    """
    return ActWrapper.load(path, num_cpu=num_cpu)
项目:combine-DT-with-NN-in-RL    作者:Burning-Bear    | 项目源码 | 文件源码
def load(path, num_cpu=16):
    """Load act function that was returned by learn function.

    Parameters
    ----------
    path: str
        path to the act function pickle
    num_cpu: int
        number of cpus to use for executing the policy

    Returns
    -------
    act: ActWrapper
        function that takes a batch of observations
        and returns actions.
    """
    return ActWrapper.load(path, num_cpu=num_cpu)
项目:rl-attack-detection    作者:yenchenlin    | 项目源码 | 文件源码
def load(path, num_cpu=16):
    """Load act function that was returned by learn function.

    Parameters
    ----------
    path: str
        path to the act function pickle
    num_cpu: int
        number of cpus to use for executing the policy

    Returns
    -------
    act: ActWrapper
        function that takes a batch of observations
        and returns actions.
    """
    return ActWrapper.load(path, num_cpu=num_cpu)
项目:hakkuframework    作者:4shadoww    | 项目源码 | 文件源码
def load_session(fname=None):
    if conf.interactive_shell.lower() == "ipython":
        log_interactive.error("There are issues with load_session in ipython. Use python for interactive shell, or use -s parameter to load session")    
        return

    import dill as pickle

    if fname is None:
        fname = conf.session
    try:
        s = pickle.load(gzip.open(fname,"rb"))
    except IOError:
        s = pickle.load(open(fname,"rb"))
    scapy_session = builtins.__dict__["scapy_session"]
    scapy_session.clear()
    scapy_session.update(s)
项目:marseille    作者:vene    | 项目源码 | 文件源码
def saga_cv_cache(*args):

    arghash = sha1(repr(args).encode('utf-8')).hexdigest()
    fn = "res/baseline_linear_{}.dill".format(arghash)

    try:
        with open(fn, 'rb') as f:
            out = dill.load(f)
        logging.info("Loaded cached version.")
    except FileNotFoundError:
        logging.info("Computing...")
        out = saga_cv(*args)
        with open(fn, 'wb') as f:
            dill.dump(out, f)

    return out
项目:trex-http-proxy    作者:alwye    | 项目源码 | 文件源码
def load_session(fname=None):
    if conf.interactive_shell.lower() == "ipython":
        log_interactive.error("There are issues with load_session in ipython. Use python for interactive shell, or use -s parameter to load session")    
        return

    import dill as pickle

    if fname is None:
        fname = conf.session
    try:
        s = pickle.load(gzip.open(fname,"rb"))
    except IOError:
        s = pickle.load(open(fname,"rb"))
    scapy_session = builtins.__dict__["scapy_session"]
    scapy_session.clear()
    scapy_session.update(s)
项目:pysc2-examples    作者:chris-chris    | 项目源码 | 文件源码
def load(path, act_params, num_cpu=16):
  """Load act function that was returned by learn function.

Parameters
----------
path: str
    path to the act function pickle
num_cpu: int
    number of cpus to use for executing the policy

Returns
-------
act: ActWrapper
    function that takes a batch of observations
    and returns actions.
"""
  return ActWrapper.load(path, num_cpu=num_cpu, act_params=act_params)
项目:pysc2-examples    作者:chris-chris    | 项目源码 | 文件源码
def load(path, act_params, num_cpu=16):
  """Load act function that was returned by learn function.

Parameters
----------
path: str
    path to the act function pickle
num_cpu: int
    number of cpus to use for executing the policy

Returns
-------
act: ActWrapper
    function that takes a batch of observations
    and returns actions.
"""
  return ActWrapper.load(path, num_cpu=num_cpu, act_params=act_params)
项目:SynthDB    作者:shawnrushefsky    | 项目源码 | 文件源码
def update(self):
        if not secure or check_key():
            with open(os.path.join(path, 'preql_queries.pickle')) as pq:
                self.queries = pickle.load(pq)
            with open(os.path.join(path, "synthdb_internal.pickle")) as sdb:
                funcs = pickle.load(sdb)
                node_topo_funcs.update(funcs['node_topo_funcs'])
                link_topo_funcs.update(funcs['link_topo_funcs'])
                graph_format.update(funcs['graph_format'])
                removers.update(funcs['removers'])
                graph_tool_functions.update(funcs['graph_tool_functions'])
                graph_generator_functions.update(funcs['graph_generator_functions'])
                walkers.update(funcs['walkers'])
                topo_formats.update(funcs['topo_formats'])
            return json.dumps("Functions updated.")
        else:
            wrong_key()
项目:chemworkflows    作者:avirshup    | 项目源码 | 文件源码
def restart_workflow(args, outdir):
    with open(args.inputfile, 'r') as infile:
        runner = dill.load(infile)

    if isinstance(runner.engine, pyccc.Docker) and runner.engine.client is None:
        runner.engine.client = runner.engine.connect_to_docker()

    engine, RunnerClass = get_execution_env(args)
    assert RunnerClass is runner.__class__

    if args.setoutput:
        set_ui_outputs(runner, args)

    print ' ----   RESTARTING WORKFLOW "%s"   ----\n' % runner.workflow.name

    run_workflow(runner, outdir)
    if args.dumptasks:
        dump_all_tasks(runner, outdir)
项目:chemworkflows    作者:avirshup    | 项目源码 | 文件源码
def process_input_file(inputfile):
    """ Figure out whether we're being passed a file, a description of a file, or just raw JSON
    """
    try:
        jsraw = _get_json(inputfile)
    except ValueError:
        pass
    else:
        print jsraw
        inputjson = json.loads(jsraw)
        return inputjson

    ext = inputfile.split('.')[-1]
    if ext in ('js', 'json', 'yml', 'yaml'):
        with open(inputfile, 'r') as infile:
            inputjson = yaml.load(infile)
    else:
        with open(inputfile, 'r') as infile:
            inputjson = {'filename': inputfile,
                         'content': infile.read()}
    return inputjson
项目:lambdify    作者:ZhukovAlexander    | 项目源码 | 文件源码
def test_create(self, mock):

        value = 1
        function_name = 'test_function'

        @Lambda(name=function_name, bucket='test', key='test', client=self.client)
        def foo():
            return value

        package = DeploymentPackage(foo)

        zfp = zipfile.ZipFile(StringIO(package.zip_bytes(foo.dumped_code)), "r")
        func = dill.load(zfp.open('.lambda.dump'))
        self.assertEqual(func(), value)

        resp_create = foo.create()
        self.assertEqual(resp_create['FunctionName'], function_name)

        # moto doesn't support ZipFile only lambda deployments, while
        # aws doen't allow other arguments when scpesifying ZipFile argument
        #resp_get = foo.get()
        #self.assertEqual(resp_get['Configuration']['FunctionName'], function_name)
项目:MetaSRA-pipeline    作者:deweylab    | 项目源码 | 文件源码
def run_sample_type_prediction(tag_to_val, mapped_terms, real_props):

    # Load the dilled vectorizer and model
    vectorizer_f = pr.resource_filename(__name__, join("predict_sample_type", "sample_type_vectorizor.dill"))
    classifier_f = pr.resource_filename(__name__, join("predict_sample_type", "sample_type_classifier.dill"))
    with open(vectorizer_f, "rb") as f:
        vectorizer = dill.load(f)
    with open(classifier_f, "rb") as f:
        model = dill.load(f)

    # Make sample-type prediction
    feat_v = vectorizer.convert_to_features(
        get_ngrams_from_tag_to_val(tag_to_val),
        mapped_terms)
    predicted, confidence = model.predict(
        feat_v,
        mapped_terms,
        real_props)

    return predicted, confidence
项目:ip6words    作者:lstn    | 项目源码 | 文件源码
def dill_words(num_words, fname="words.dill"):
    fname = os.path.join(os.path.dirname(os.path.realpath(__file__)), fname)
    try:
        if os.path.isfile(fname):
            words = dill.load(open(fname, "rb"))
            if(len(words) < ip_handling.iutils.get_ipv6_word_possibilities()):
                os.remove(fname)
                raise Exception # go into except block to reload words
            return words
        else:
            words = load_words(num_words)
            if(len(words) < ip_handling.iutils.get_ipv6_word_possibilities()):
                raise Exception # go into except block to reload words
            dill.dump(words, open(fname, "wb"))
            return words
    except:
        try:
            words = load_words(num_words)
            if(len(words) < ip_handling.iutils.get_ipv6_word_possibilities()):
                raise Exception # go into except block to reload words
            dill.dump(words, open(fname, "wb"))
            return words
        except:
            return load_words(num_words)
项目:EternityII    作者:lumy    | 项目源码 | 文件源码
def _load_file(path):
  """
    Use to load a file with dill, used for loading puzzle. file should have \
    been wrote with dill.

  :param str path: path to the file to load
  :return: object (excepted [Puzzle](doc/puzzle.md) but no check is made)
  """
  try:
    with open(path, "rb") as e:
      puzzle.Puzzle.dynamique_type()
      return dill.load(e)
  except Exception as e:
    print "Exception while loading file %s" % path
    print e
    return None
项目:PaintingToArtists    作者:achintyagopal    | 项目源码 | 文件源码
def get_files(folder_name, algorithm, args):

    foldersTmp = os.listdir(folder_name)
    folders = []
    for folder in foldersTmp:
        if folder[0] == '.':
            continue
        folders.append(folder)

    imgs = []
    for folder in folders:
        path = folder_name + folder + '/'
        if not os.path.isdir(path):
            continue

        files = os.listdir(path)
        for file_str in files:
            complete_file_str = str((os.path.join(path, file_str)))
            if os.path.isfile(complete_file_str) and (complete_file_str.endswith('.jpg') or complete_file_str.endswith('.JPG')):
                imgs.append((os.path.join(path, file_str), folder))

    return imgs


# load instances from filename
项目:PaintingToArtists    作者:achintyagopal    | 项目源码 | 文件源码
def get_files(folder_name, algorithm, args):
    foldersTmp = os.listdir(folder_name)
    folders = []
    for folder in foldersTmp:
        if folder[0] == '.':
            continue
        folders.append(folder)

    imgs = []
    for folder in folders:
        path = folder_name + folder + '/'
        if not os.path.isdir(path):
            continue

        files = os.listdir(path)
        for file_str in files:
            complete_file_str = str((os.path.join(path, file_str)))
            if os.path.isfile(complete_file_str) and (complete_file_str.endswith('.jpg') or complete_file_str.endswith('.JPG')):
                imgs.append((os.path.join(path, file_str), folder))
    return imgs


# load instances from filename
项目:easytrader    作者:yuzhucu    | 项目源码 | 文件源码
def main(prepare, use, do, get, params, debug):
    if get is not None:
        do = get
    if prepare is not None and use in ['ht', 'yjb', 'yh', 'gf', 'xq']:
        user = easytrader.use(use, debug)
        user.prepare(prepare)
        with open(ACCOUNT_OBJECT_FILE, 'wb') as f:
            dill.dump(user, f)
    if do is not None:
        with open(ACCOUNT_OBJECT_FILE, 'rb') as f:
            user = dill.load(f)

        if len(params) > 0:
            result = getattr(user, do)(*params)
        else:
            result = getattr(user, do)

        json_result = json.dumps(result, indent=4, ensure_ascii=False, sort_keys=True)
        click.echo(json_result)
项目:Quadflor    作者:quadflor    | 项目源码 | 文件源码
def read(self):
        """
        Reads from persisted files.

        Returns
        -------
        sparse matrix
            The train data
        sparse matrix
            The label data
        ThesaurusReader
            Unpickled ThesaurusReader object
        """
        print('Reading persisted features')
        X = self._load_sparse_csr(self._persist_name('X'))
        y = self._load_sparse_csr(self._persist_name('y'))
        with open(self._persist_name('TR'), mode='rb') as f:
            tr = pickle.load(f)
        return X, y, tr
项目:BotBoosted    作者:brityboy    | 项目源码 | 文件源码
def create_processed_dataframe_from_mongo(dbname):
    '''
    INPUT
         - dbname: this is the name of the mongo database where the
         information will be extracted from
    OUTPUT
         - df

    Returns a dataframe that has everything needed in order to do modelling
    '''
    df = extract_user_information_from_mongo(dbname, 'topictweets')
    # df = pd.read_csv('data/clinton_df.csv')
    # df.id = df.id.apply(str)
    feature_dict = extract_feature_information_from_mongo(dbname,
                                                          'timelinetweets')
    # with open('data/clinton_tweets_dict.pkl', 'r') as f:
    #     feature_dict = pickle.load(f)
    df = df.drop_duplicates(subset='id', keep='last')
    users_who_tweeted = set(feature_dict.keys())
    dfusers_who_tweeted = df[df.id.isin(users_who_tweeted)]
    # subset the initial user dataframe to have ONLY the users who tweeted
    df = combine_user_info_with_feature_dict(dfusers_who_tweeted, feature_dict)
    df = process_feature_information_for_modelling(df, feature_dict)
    df = drop_unnecessary_columns_from_test_data(df)
    return df
项目:mbot    作者:michaelkuty    | 项目源码 | 文件源码
def restore_state(self, path):
        """Returns loaded state"""

        try:
            with open(path, 'rb') as f:
                if self.encrypt:
                    state = pickle.loads(self.decrypt_data(pickle.load(f)))
                else:
                    state = pickle.load(f)

                LOG.debug("Restoring state successs")
        except Exception as e:
            LOG.debug("Restoring state from %s failed with %s" % (
                path, e))
            state = StateMachine(self.bot, state_path=path)
            LOG.debug("Successfully inicialized new state.")

        return state
项目:PyQYT    作者:collinsctk    | 项目源码 | 文件源码
def load_session(fname=None):
    if conf.interactive_shell.lower() == "ipython":
        log_interactive.error("There are issues with load_session in ipython. Use python for interactive shell, or use -s parameter to load session")    
        return

    import dill as pickle

    if fname is None:
        fname = conf.session
    try:
        s = pickle.load(gzip.open(fname,"rb"))
    except IOError:
        s = pickle.load(open(fname,"rb"))
    scapy_session = builtins.__dict__["scapy_session"]
    scapy_session.clear()
    scapy_session.update(s)
项目:shapenet    作者:pannous    | 项目源码 | 文件源码
def restore(file_name="dump.bin"):
    return pickle.load(open(file_name, 'rb'))


# class Encoding:
#     pass


# @extension
# class Math:
# WOOOT? just
# import math as Math
# def __getattr__(self, attr):
#     import sys
#     import math
#  # ruby method_missing !!!
#     import inspect
#     for name, obj in inspect.getmembers(sys.modules['math']):
#         if name==attr: return obj
#     return False
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def load(path, num_cpu=16):
        with open(path, "rb") as f:
            model_data, act_params = dill.load(f)
        act = deepq.build_act(**act_params)
        sess = U.make_session(num_cpu=num_cpu)
        sess.__enter__()
        with tempfile.TemporaryDirectory() as td:
            arc_path = os.path.join(td, "packed.zip")
            with open(arc_path, "wb") as f:
                f.write(model_data)

            zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
            U.load_state(os.path.join(td, "model"))

        return ActWrapper(act, act_params)
项目:SGAN    作者:YuhangSong    | 项目源码 | 文件源码
def restore(self):

        print('Try load previous plot....')
        try:
            self._since_beginning = dill.load(open(self.LOGDIR+'log.pkl', "r"))
            self._iter = dill.load(open(self.LOGDIR+'iteration.pkl', "r"))
            # self._iter += 1
            print('Restore plot from iter: '+str(self._iter))
            return self._iter
        except Exception, e:
            print('Previous plot unfounded')
            return 0
        print('')
项目:kaggle    作者:RankingAI    | 项目源码 | 文件源码
def __MergeData(cls, InputDir, OutputDir, mode):
        """"""
        if(mode == 'train'):
            ActionDataFile = '%s/train_2016_v2.csv' % InputDir
            OutputFile = '%s/train.pkl' % OutputDir
        else:
            ActionDataFile = '%s/sample_submission.csv' % InputDir
            OutputFile = '%s/test.pkl' % OutputDir

        print(OutputFile)

        PropertyDataFile = '%s/properties_2016.csv' % InputDir

        ## load
        ActionData = pd.read_csv(ActionDataFile, parse_dates=['transactiondate'])
        PropertyData = pd.read_csv(PropertyDataFile)

        ## left join
        MergedData = ActionData.merge(PropertyData, how='left', on='parcelid')

        ## output into pkl file
        if (os.path.exists(OutputDir) == False):
            os.makedirs(OutputDir)
        with open(OutputFile, 'wb') as o_file:
            pickle.dump(MergedData, o_file, -1)
        o_file.close()

        return

    ## split rawcensustractandblock into census, tract and block
项目:kaggle    作者:RankingAI    | 项目源码 | 文件源码
def __ParseCTB(cls, InputDir, OutputDir, mode):
        """"""
        if(mode == 'train'):
            InputFile = '%s/train.pkl' % InputDir
            OutputFile = '%s/train.pkl' % OutputDir
        else:
            InputFile = '%s/test.pkl' % InputDir
            OutputFile = '%s/test.pkl' % OutputDir

        ## load
        with open(InputFile, 'rb') as i_file:
            df_data = pickle.load(i_file)
        i_file.close()

        ## extract census, tract and block identifies
        df_data['rawcensustractandblock'] = (df_data['rawcensustractandblock'] * 1000).astype(np.float64).astype(np.int64)
        df_data['fipsid'] = ((df_data['rawcensustractandblock'] / 10000000).astype(np.int64)).astype(str)
        df_data['tractandblock'] = df_data['rawcensustractandblock'] % 10000000
        df_data['tractid'] = ((df_data['tractandblock'] / 10).astype(np.int64)).astype(str)
        df_data['blockid'] = ((df_data['tractandblock'] % 10).astype(np.int64)).astype(str)
        df_data.drop(['fips', 'rawcensustractandblock', 'tractandblock'], axis = 1, inplace = True)

        ## output into pkl file
        if (os.path.exists(OutputDir) == False):
            os.makedirs(OutputDir)
        with open(OutputFile, 'wb') as o_file:
            pickle.dump(df_data, o_file, -1)
        o_file.close()

        return
项目:kaggle    作者:RankingAI    | 项目源码 | 文件源码
def __SplitData(cls, InputDir, OutputDir, mode):
        """"""
        if(mode == 'train'):
            InputFileData = '%s/train.pkl' % InputDir
        else:
            InputFileData = '%s/test.pkl' % InputDir

        InputFileFeatMap = '%s/featmap.pkl' % InputDir

        ## load
        with open(InputFileData, 'rb') as i_file:
            df_data = pickle.load(i_file)
        i_file.close()
        with open(InputFileFeatMap, 'rb') as i_file:
            d_feat = pickle.load(i_file)
        i_file.close()

        if (os.path.exists(OutputDir) == False):
            os.makedirs(OutputDir)
        with open('%s/featmap.pkl' % OutputDir, 'wb') as o_file:
            pickle.dump(d_feat, o_file, -1)
        o_file.close()

        ## output into individual pkl files
        for i in range(12):
            month = i + 1
            df_MonthData = df_data[(df_data['transactiondate'].dt.month == month)]
            with open('%s/%s.pkl'% (OutputDir, month), 'wb') as o_file:
                pickle.dump(df_MonthData, o_file, -1)
            o_file.close()

        return

    ## launch single task
项目:kaggle    作者:RankingAI    | 项目源码 | 文件源码
def LoadFromHdfFile(InputDir, mode = 'train'):

        if(mode == 'train'):
            data = pd.read_hdf(path_or_buf= '%s/train.hdf' % InputDir, key='train')
        elif(mode == 'valid'):
            data = pd.read_hdf(path_or_buf= '%s/valid.hdf' % InputDir, key='valid')
        else:
            data = pd.read_hdf(path_or_buf= '%s/test.hdf' % InputDir, key='test')

        return data

    ## class method, load data with pkl format
项目:kaggle    作者:RankingAI    | 项目源码 | 文件源码
def LoadFromPklFile(InputDir):

        with open('%s/train.pkl' % InputDir, 'rb') as i_file:
            TrainData = pickle.load(i_file)
        i_file.close()

        with open('%s/test.pkl' % InputDir, 'rb') as i_file:
            TestData = pickle.load(i_file)
        i_file.close()

        return TrainData,TestData

    ## class method, load data with text format
项目:catalearn    作者:Catalearn    | 项目源码 | 文件源码
def download_and_unzip_result(url, job_hash):
    r = requests.get(url, stream=True)
    status_check(r)
    total_size = int(r.headers.get('content-length', 0))
    with open('download.zip', 'wb') as f:
        pbar = tqdm(total=total_size, unit='B', unit_scale=True)

        chunk_size = 1024 * 32  # 32kb
        for data in r.iter_content(chunk_size):
            f.write(data)
            pbar.update(chunk_size)
        # again there might be a pbar issue here
        pbar.close()

    zip_content = open("download.zip", "rb").read()
    z = ZipFile(io.BytesIO(zip_content))
    z.extractall()
    remove('download.zip')

    result = None  # output of the script
    new_files = None  # names of new files created by the script

    pickle_path = path.abspath(path.join(job_hash, job_hash + '.pkl'))
    if path.isfile(pickle_path):
        with open(pickle_path, 'rb') as f:
            # Hack: a workaround for dill's pickling problem
            # import_all()
            result = dill.load(f)
            # unimport_all()
        remove(pickle_path)

    if path.isdir(job_hash):
        new_files = listdir(job_hash)
        for name in new_files:
            rename(path.join(job_hash, name), name)
        rmtree(job_hash)

    return result, new_files
项目:combine-DT-with-NN-in-RL    作者:Burning-Bear    | 项目源码 | 文件源码
def load(path, num_cpu=16):
        with open(path, "rb") as f:
            model_data, act_params = dill.load(f)
        act = build_act(**act_params)
        sess = U.make_session(num_cpu=num_cpu)
        sess.__enter__()
        with tempfile.TemporaryDirectory() as td:
            arc_path = os.path.join(td, "packed.zip")
            with open(arc_path, "wb") as f:
                f.write(model_data)

            zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
            U.load_state(os.path.join(td, "model"))

        return ActWrapper(act, act_params)
项目:combine-DT-with-NN-in-RL    作者:Burning-Bear    | 项目源码 | 文件源码
def load(path, num_cpu=16):
        with open(path, "rb") as f:
            model_data, act_params = dill.load(f)
        act = build_act(**act_params)
        sess = U.make_session(num_cpu=num_cpu)
        sess.__enter__()
        with tempfile.TemporaryDirectory() as td:
            arc_path = os.path.join(td, "packed.zip")
            with open(arc_path, "wb") as f:
                f.write(model_data)

            zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
            U.load_state(os.path.join(td, "model"))

        return ActWrapper(act, act_params)
项目:auto_ml    作者:doordash    | 项目源码 | 文件源码
def test_verify_features_does_not_work_by_default():
    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset()
    ml_predictor = utils.train_basic_binary_classifier(df_titanic_train)

    file_name = ml_predictor.save(str(random.random()))

    with open(file_name, 'rb') as read_file:
        saved_ml_pipeline = dill.load(read_file)
    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass


    with warnings.catch_warnings(record=True) as w:

        results = saved_ml_pipeline.named_steps['final_model'].verify_features(df_titanic_test)

        print('Here are the caught warnings:')
        print(w)

        assert len(w) == 1

        assert results == None
项目:auto_ml    作者:doordash    | 项目源码 | 文件源码
def test_verify_features_finds_no_missing_features_when_none_are_missing():
        np.random.seed(0)

        df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset()

        column_descriptions = {
            'survived': 'output'
            , 'embarked': 'categorical'
            , 'pclass': 'categorical'
            , 'sex': 'categorical'
        }


        ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions)
        ml_predictor.train(df_titanic_train, verify_features=True)

        file_name = ml_predictor.save(str(random.random()))

        with open(file_name, 'rb') as read_file:
            saved_ml_pipeline = dill.load(read_file)
        os.remove(file_name)

        missing_features = saved_ml_pipeline.named_steps['final_model'].verify_features(df_titanic_test)
        print('missing_features')
        print(missing_features)


        print("len(missing_features['prediction_not_training'])")
        print(len(missing_features['prediction_not_training']))
        print("len(missing_features['training_not_prediction'])")
        print(len(missing_features['training_not_prediction']))
        assert len(missing_features['prediction_not_training']) == 0
        assert len(missing_features['training_not_prediction']) == 0
项目:auto_ml    作者:doordash    | 项目源码 | 文件源码
def load_ml_model(file_name):

    with open(file_name, 'rb') as read_file:
        base_pipeline = dill.load(read_file)

    if isinstance(base_pipeline, utils_categorical_ensembling.CategoricalEnsembler):
        for step in base_pipeline.transformation_pipeline.named_steps:
            pipeline_step = base_pipeline.transformation_pipeline.named_steps[step]

            try:
                if pipeline_step.get('model_name', 'reallylongnonsensicalstring')[:12] == 'DeepLearning':
                    pipeline_step.model = insert_deep_learning_model(pipeline_step, file_name)
            except AttributeError:
                pass

        for step in base_pipeline.trained_models:
            pipeline_step = base_pipeline.trained_models[step]

            try:
                if pipeline_step.get('model_name', 'reallylongnonsensicalstring')[:12] == 'DeepLearning':
                    pipeline_step.model = insert_deep_learning_model(pipeline_step, file_name)
            except AttributeError:
                pass

    else:

        for step in base_pipeline.named_steps:
            pipeline_step = base_pipeline.named_steps[step]
            try:
                if pipeline_step.get('model_name', 'reallylongnonsensicalstring')[:12] == 'DeepLearning':
                    pipeline_step.model = insert_deep_learning_model(pipeline_step, file_name)
            except AttributeError:
                pass

    return base_pipeline

# Keeping this here for legacy support
项目:rl-attack-detection    作者:yenchenlin    | 项目源码 | 文件源码
def load(path, num_cpu=16):
        with open(path, "rb") as f:
            model_data, act_params = dill.load(f)
        act = deepq.build_act(**act_params)
        sess = U.make_session(num_cpu=num_cpu)
        sess.__enter__()
        with tempfile.TemporaryDirectory() as td:
            arc_path = os.path.join(td, "packed.zip")
            with open(arc_path, "wb") as f:
                f.write(model_data)

            zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
            U.load_state(os.path.join(td, "model"))

        return ActWrapper(act, act_params)
项目:BMSpy    作者:romeopatrick11    | 项目源码 | 文件源码
def Load(file):
    """ Loads a model from specified file """
    with open(file,'rb') as file:
        model=dill.load(file)
        return model
项目:hakkuframework    作者:4shadoww    | 项目源码 | 文件源码
def update_session(fname=None):
    import dill as pickle
    if fname is None:
        fname = conf.session
    try:
        s = pickle.load(gzip.open(fname,"rb"))
    except IOError:
        s = pickle.load(open(fname,"rb"))
    scapy_session = builtins.__dict__["scapy_session"]
    scapy_session.update(s)


################
##### Main #####
################
项目:hakkuframework    作者:4shadoww    | 项目源码 | 文件源码
def load_object(fname):
    import dill as pickle
    return pickle.load(gzip.open(fname,"rb"))
项目:marseille    作者:vene    | 项目源码 | 文件源码
def load_csr(f, return_y=False):
    npz = np.load(f)
    X = csr_matrix((npz['data'], npz['indices'], npz['indptr']),
                   shape=npz['shape'])

    if return_y:
        return X, npz['y']
    else:
        return X
项目:marseille    作者:vene    | 项目源码 | 文件源码
def load_results(key, args):
    fn = cache_fname(key, args)
    with open(fn, "rb") as f:
        return dill.load(f)
项目:marseille    作者:vene    | 项目源码 | 文件源码
def saga_score_struct_cache(*args):

    arghash = sha1(repr(("score_struct",) + args).encode('utf-8')).hexdigest()
    fn = "res/baseline_linear_{}.dill".format(arghash)

    try:
        with open(fn, 'rb') as f:
            out = dill.load(f)
        logging.info("Loaded cached version.")
    except FileNotFoundError:
        logging.info("Computing...")
        out = saga_score_struct(*args)
        with open(fn, 'wb') as f:
            dill.dump(out, f)

    return out
项目:marseille    作者:vene    | 项目源码 | 文件源码
def linear_cv_score(dataset, alpha, l1_ratio, constraints):

    fn = cache_fname("linear_cv_score", (dataset, alpha, l1_ratio,
                                         constraints))
    if os.path.exists(fn):
        logging.info("Loading {}".format(fn))
        with open(fn, "rb") as f:
            return dill.load(f)

    load, ids = get_dataset_loader(dataset, split="train")
    n_folds = 5 if dataset == 'ukp' else 3

    scores = []
    for k, (tr, val) in enumerate(KFold(n_folds).split(ids)):
        Y_marg, bl = saga_decision_function(dataset, k, alpha, alpha, l1_ratio)

        val_docs = list(load(ids[val]))
        Y_true = [doc.label for doc in val_docs]
        Y_pred = bl.fast_decode(Y_marg, val_docs, constraints)

        scores.append(bl._score(Y_true, Y_pred))

    with open(fn, "wb") as f:
        logging.info("Saving {}".format(fn))
        dill.dump(scores, f)
    return scores
项目:marseille    作者:vene    | 项目源码 | 文件源码
def svmstruct_cv_score(dataset, C, class_weight, constraints,
                       compat_features, second_order_features):

    fn = cache_fname("svmstruct_cv_score", (dataset, C, class_weight,
                                            constraints, compat_features,
                                            second_order_features))

    if os.path.exists(fn):
        logging.info("Cached file already exists.")
        with open(fn, "rb") as f:
            return dill.load(f)

    load, ids = get_dataset_loader(dataset, split="train")

    n_folds = 5 if dataset == 'ukp' else 3

    # below are boolean logical ops
    grandparents = second_order_features and dataset == 'ukp'
    coparents = second_order_features
    siblings = second_order_features and dataset == 'cdcp'

    scores = []
    all_Y_pred = []

    for k, (tr, val) in enumerate(KFold(n_folds).split(ids)):
        train_docs = list(load(ids[tr]))
        val_docs = list(load(ids[val]))

        clf, Y_val, Y_pred = fit_predict(train_docs, val_docs, dataset, C,
                                         class_weight,
                                         constraints, compat_features,
                                         second_order_features, grandparents,
                                         coparents, siblings)
        all_Y_pred.extend(Y_pred)
        scores.append(clf.model._score(Y_val, Y_pred))

    with open(fn, "wb") as f:
        dill.dump((scores, all_Y_pred), f)

    return scores, all_Y_pred
项目:loman    作者:janusassetallocation    | 项目源码 | 文件源码
def read_dill(file_):
        """
        Deserialize a computation from a file or file-like object

        :param file_: If string, writes to a file
        :type file_: File-like object, or string
        """
        if isinstance(file_, six.string_types):
            with open(file_, 'rb') as f:
                return dill.load(f)
        else:
            return dill.load(file_)
项目:all2vec    作者:iheartradio    | 项目源码 | 文件源码
def load(self, pkl, filepath):
        entity_type = pkl.get_entity_type(self._entity_type_id)
        self.__dict__ = entity_type.__dict__
        # initialize index
        self._ann_obj = AnnoyIndex(pkl.get_nfactor(), entity_type._metric)
        # mmap the file
        self._ann_obj.load(filepath)
项目:all2vec    作者:iheartradio    | 项目源码 | 文件源码
def load_entities(self, entities, file_getter):
        """Load underlying entities."""
        for k in entities:
            annoy_filepath = file_getter.get_file_path('{}.ann'.format(k))
            try:
                self._annoy_objects[k].load(self,
                                            annoy_filepath)
            except IOError as e:
                raise IOError(
                    "Error: cannot load file {0}, which was built "
                    "with the model. '{1}'".format(annoy_filepath, e)
                )