我们从Python开源项目中,提取了以下1个代码示例,用于说明如何使用dlib.net()。
def prepare_data(video_dir, output_dir, max_video_limit=1, screen_display=False): """ Args: 1. video_dir: Directory storing all videos to be processed. 2. output_dir: Directory where all mouth region images are to be stored. 3. max_video_limit: Puts a limit on number of videos to be used for processing. 4. screen_display: Decides whether to use screen (to display video being processed). """ video_file_paths = sorted(glob.glob(video_dir + "*.mp4"))[:max_video_limit] load_trained_models() if not FACE_DETECTOR_MODEL: print "[ERROR]: Please ensure that you have dlib's landmarks predictor file " + \ "at data/dlib_data/. You can download it here: " + \ "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" return False for path in video_file_paths: extract_mouth_regions(path, output_dir, screen_display) return True