我们从Python开源项目中,提取了以下1个代码示例,用于说明如何使用dlib.hit_enter_to_continue()。
def encode(detector, shape_predictor, model, image, win=None): """Encodes faces from a single image into a 128 dim descriptor. Args: detector: dlib face detector object shape_predictor: dlib shape predictor object model: dlib convnet model image: image as numpy array win: dlib window object for vizualization if VIZ flag == 1 Returns: list of descriptors (np array) for each face detected in image """ # dlib comments: # Ask the detector to find the bounding boxes of each face. The 1 in the # second argument indicates that we should upsample the image 1 time. This # will make everything bigger and allow us to detect more faces. dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) descriptors = [] for k, d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( k, d.left(), d.top(), d.right(), d.bottom())) # Get the landmarks/parts for the face in box d. shape = sp(img, d) # Draw the face landmarks on the screen so we can see what face is currently being processed. if win is not None: win.clear_overlay() win.set_image(img) win.add_overlay(d) win.add_overlay(shape) dlib.hit_enter_to_continue() # Compute the 128D vector that describes the face in img identified by shape face_descriptor = facerec.compute_face_descriptor(img, shape) descriptors.append(np.asarray(list(face_descriptor))) return descriptors